精英家教网 > 高中数学 > 题目详情
2.数列$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,$\frac{1}{5}$…的通项公式可能为(  )
A.${a_n}=\frac{1}{n}$B.${a_n}=\frac{1}{n+1}$C.an=nD.${a_n}=\frac{1}{2n}$

分析 根据题意,分析数列的各项的分母与分母的变化规律,进而用含有n的式子表示出来,即可得答案

解答 解:根据题意,所给数列的各项分母依次为2、3、4、5…,为n+1,
而各项的分子均为1,
故数列$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,$\frac{1}{5}$…的通项公式可能为an=$\frac{1}{n+1}$,
故选:B

点评 本题考查数列的表示与归纳推理的运用,解答的关键在于根据所给的数列的特点,发现数列的变化规律.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知圆F1:(x+1)2+y2=16及点F2(1,0),在圆F1任取一点M,连接MF2并延长交圆F1于点N,连接F1N,过F2作F2P∥MF1交NF1于P,如图所示.若从F2点引一条直线l交轨迹P于A,B两点,变化直线l (l的斜率一直存在),则$\frac{1}{{|F}_{2}A|}$+$\frac{1}{|{F}_{2}B|}$的值(  )
A.$\frac{4}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}+1}}{2}$D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知圆锥的底面半径为R,高为2R,在它的所有内接圆柱中,侧面积的最大值是(  )
A.$\frac{1}{4}π{R^2}$B.$\frac{1}{2}π{R^2}$C.πR2D.2πR2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=-x3+ax2+bx(a,b∈R)的图象如图所示,它与x轴在原点处相切,且x轴与函数图象所围成区域(图中阴影部分)的面积为$\frac{1}{12}$,若函数f(x)在$({\frac{-1-k}{2},\frac{-1+k}{2}})$上单调增,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}的前n项和为Sn,且a1=3,${a_n}=2{S_{n-1}}+{3^n}$(n∈N*且n≥2),则数列{an}的通项公式为an=(2n+1)•3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知四棱锥V-ABCD的底面是面积为16的正方形ABCD,侧面是全等的等腰三角形,一条侧棱长为2$\sqrt{11}$,计算它的高和侧面三角形底边上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某人经营一个抽奖游戏,顾客花费2元钱可购买一次游戏机会,每次游戏中,顾客从装有1个黑球,3个红球,6个白球的不透明袋子中依次不放回地摸出3个球(除颜色外其他都相同),根据摸出的球的颜色情况进行兑奖,顾客获得一等奖、二等奖、三等奖、四等奖时分别可领取奖金a元、10元、5元、1元,若经营者将顾客摸出的3个球的颜色情况分成以下类别:A:1个黑球2个红球;B:3个红球;C:恰有1个白球;D:恰有2个白球;E:3个白球.且经营者计划将五种类别按照发生机会从小到大的顺序分别对应中一等奖、中二等奖、中三等奖、中四等奖、不中奖五个层次.
(1)请写出一至四等奖分别对应的类别(写出字母即可);
(2)若经营者不打算在这个游戏的经营中亏本,求a的最大值;
(3)若a=50,当顾客摸出的第一个球是红球时,求他领取的奖金的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,高二月考考试后,将高二(3)班男生、女生各四名同学的数学成绩(单位:分)用茎叶图表示.女生某个数据的个位数模糊,记为x,已知男生、女生的平均成绩相同.
(Ⅰ)求x的值,并判断男生与女生哪组学生成绩更稳定;
(Ⅱ)在男生、女生中各抽取1名同学,求这2名同学的得分之和低于200分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求满足下列条件的实数x的取值范围:
(1)3x<9;
(2)2x>$\frac{1}{8}$;
(3)($\frac{1}{3}$)x>$\root{3}{9}$;
(4)3x>7x

查看答案和解析>>

同步练习册答案