分析 根据函数与x轴在原点处相切,建立方程关系即可求出b,结合积分的应用,求出对应区域的面积,求出a,求出函数的导数,解函数单调性和导数之间的关系建立不等式进行求解即可.
解答 解:∵函数f(x)的图象与x轴在原点处相切,
∴f′(0)=0,
∵f′(x)=-3x2+2ax+b,
∴f′(0)=0,得b=0,
∴f(x)=-x3+ax2=-x2(x-a),
令f(x)=0,可得x=0或者x=a,
可以得到图象与x轴交点为(0,0),(a,0),(a<0),
故|f(x)|从a到0求定积分即为所求面积,即∫-a0|f(x)|dx=∫-a0[-f(x)]dx=$\frac{1}{12}$,
即∫-a0(-x3+ax2)dx=(-$\frac{1}{4}$x4+$\frac{1}{3}$ax3)|${\;}_{a}^{0}$=$\frac{1}{4}$a4-$\frac{1}{3}$a4=$\frac{1}{12}$,
即a4=1,解得a=-1.
则f(x)=-x3-x2,
函数的导数f′(x)=-3x2-2x,
由f′(x)>0得-$\frac{2}{3}$<x<0,即函数的单调递增区间为[-$\frac{2}{3}$,0],
∵函数f(x)在$({\frac{-1-k}{2},\frac{-1+k}{2}})$上单调增,
∴$\left\{\begin{array}{l}{\frac{-1-k}{2}≥-\frac{2}{3}}\\{\frac{-1+k}{2}≤0}\\{\frac{-1-k}{2}<\frac{-1+k}{2}}\end{array}\right.$,得$\left\{\begin{array}{l}{k≤\frac{1}{3}}\\{k≤1}\\{k>0}\end{array}\right.$,即0<k≤$\frac{1}{3}$,
即k的取值范围是0<k≤$\frac{1}{3}$.
点评 本题主要考查了导数的几何意义以及定积分在求面积中的应用,考查了计算能力和识图能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $f(x)=\sqrt{-{x^3}}$与$g(x)=x\sqrt{-x}$ | B. | $f(x)=\frac{(2x-1)(x-2)}{x-2}$与g(x)=2x-1 | ||
| C. | f(x)=x0与g(x)=1 | D. | f(x)=x2-2x-1与g(t)=t2-2t-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1+$\sqrt{3}$i | B. | -1-$\sqrt{3}$i | C. | $\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i | D. | -$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{2}}}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${a_n}=\frac{1}{n}$ | B. | ${a_n}=\frac{1}{n+1}$ | C. | an=n | D. | ${a_n}=\frac{1}{2n}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (8,9] | B. | (0,8) | C. | [8,9] | D. | (8,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3\sqrt{5}}}{2}$ | B. | $2\sqrt{2}$ | C. | $\sqrt{5}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com