精英家教网 > 高中数学 > 题目详情
17.已知数列{an}的前n项和为Sn,且a1=3,${a_n}=2{S_{n-1}}+{3^n}$(n∈N*且n≥2),则数列{an}的通项公式为an=(2n+1)•3n-1

分析 当n∈N*,n≥2时,an=Sn-Sn-1,可得;${S_n}=3{S_{n-1}}+{3^n}$,化为:$\frac{S_n}{3^n}-\frac{{{S_{n-1}}}}{{{3^{n-1}}}}=1$,$\frac{S_1}{3}=1$,利用等差数列的通项公式,及其递推关系即可得出.

解答 解:∵当n∈N*,n≥2时,an=Sn-Sn-1
∴由${a_n}=2{S_{n-1}}+{3^n}$得${S_n}-{S_{n-1}}=2{S_{n-1}}+{3^n}$,即${S_n}=3{S_{n-1}}+{3^n}$,
两边同时除以3n得$\frac{S_n}{3^n}-\frac{{{S_{n-1}}}}{{{3^{n-1}}}}=1$,$\frac{S_1}{3}=1$,∴数列$\left\{{\frac{S_n}{3^n}}\right\}$是以1为首项,1为公差的等差数列,∴$\frac{S_n}{3^n}=n$.
即${S_n}=n•{3^n}$,当n∈N*,n≥2时,${a_n}=2{S_{n-1}}+{3^n}=2•(n-1)•{3^{n-1}}+{3^n}$=(2n+1)•3n-1,该式对n=1成立,
故${a_n}=(2n+1)•{3^{n-1}}$.
故答案为:(2n+1)•3n-1

点评 本题考查了递推关系、等差数列的通项公式与求和公式,考查了分类讨论、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知θ∈($\frac{3π}{2}$,2π),且cos(θ-$\frac{π}{4}$)=$\frac{3}{5}$,则tan(θ+$\frac{π}{4}$)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x3-ax2+3x+6,若x=3是f(x)的一个极值点,求f(x)在[0,a]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.点P(-3,1)在椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左准线($x=-\frac{a^2}{c}$)上.过点P且方向为$\overrightarrow a$=(2,-5)的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{1}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.用一个实心木球毛坯加工成一个棱长为$\sqrt{2}$的三棱锥,则木球毛坯体积的最小值应为$\frac{\sqrt{3}}{2}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.数列$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,$\frac{1}{5}$…的通项公式可能为(  )
A.${a_n}=\frac{1}{n}$B.${a_n}=\frac{1}{n+1}$C.an=nD.${a_n}=\frac{1}{2n}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=(ax+b)ex,其中e为自然对数的底数,b是复数$\frac{3i-2}{i}$的实部.
(1)求函数f(x)的单调区间
(2)设函数g(x)=$\frac{1}{2}$x-lnx+t,当a=-1时,存在x∈(0,+∞)使得f(x)≤g(x)成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}中,a1=1,a2=3,其前n项和Sn满足Sn+Sn-2=2Sn-1+n(n≥3).
(1)求证:an=an-1+n;
(2)求数列{an}的通项公式an
(3)若bn=|${\frac{{4{a_n}}}{n}$-10|,n∈N*,求数列{bn}的前n的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是b<a<c.

查看答案和解析>>

同步练习册答案