分析 1条直线把平面分成2个区域,2条直线马平面分成2+2个区域,3条把平面分成2+2+3个区域,4条直线把平面分成2+2+3+4个区域,由此可知若n条直线把平面分成f(k)个区域,则f(k+1)-f(k)=k+1.
解答 解:1条直线把平面分成2个区域,
2条直线马平面分成2+2个区域,
3条把平面分成2+2+3个区域,
4条直线把平面分成2+2+3+4个区域,
5条直线把平面分成2+2+3+4+5=16个区域,
由此可知若n条直线把平面分成f(k)个区域,则f(k+1)-f(k)=k+1.
故答案为:16,k+1.
点评 本题主要考查了归纳推理,以及数列递推式,属于中档题.所谓归纳推理,就是从个别性知识推出一般性结论的推理.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}π{R^2}$ | B. | $\frac{1}{2}π{R^2}$ | C. | πR2 | D. | 2πR2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com