【题目】已知函数![]()
(1)若函数
在定义域上是增函数,求
的取值范围;
(2)若
恒成立,求
的值.
【答案】(1) a
;(2)a=1
【解析】
(1)若函数
在定义域上是增函数.则
恒成立,再变量分离求最值即可得解;(2)根据不等式恒成立,转化为最值问题,求出函数的导数,利用函数的单调性求最值即可.
(1)∵
,∴![]()
∵
在定义域上是单调增函数,∴当
时,
恒成立,
∴
,设
>0,则
又![]()
所以a
(2)(Ⅱ)f(x)≤ax恒成立等价于
,f(x)﹣ax≤0恒成立.
令
,
则f(x)≤ax恒成立等价于
,h(x)≤0=h(1)(*).
要满足(*)式,即h(x)在x=1时取得最大值.
∵
.
由h'(1)=0解得a=1.
当a=1时,
,
∴当
时,h'(x)>0;当x∈(1,+∞)时,h'(x)<0.
∴当a=1时,h(x)在
上单调递增,在(1,+∞)上单调递减,
从而h(x)≤h(1)=0,符合题意.
所以,a=1.
科目:高中数学 来源: 题型:
【题目】在一个长方体的容器中,里面装有少量的水,现在将容器绕着其底部的一条棱倾斜.
(1)在倾斜的过程中,水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?
(2)在倾斜的过程中,水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?
(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底面的一个顶点,上面的第(1)问和第(2)问对不对?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点P与两个定点O(0,0),A(3,0)的距离的比值为2,点P的轨迹为曲线C.
(1)求曲线C的轨迹方程
(2)过点(﹣1,0)作直线与曲线C交于A,B两点,设点M坐标为(4,0),求△ABM面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在△
中,
,
分别为
,
的中点,
为
的中点,
,
.将△
沿
折起到△
的位置,使得平面
平面
,
为
的中点,如图2.
(Ⅰ)求证:
平面
;
(Ⅱ)求F到平面A1OB的距离.
![]()
图1 图2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px(p>0)的焦点为F,过F且斜率为
的直线l与抛物线C交于A,B两点,B在x轴的上方,且点B的横坐标为4.![]()
(1)求抛物线C的标准方程;
(2)设点P为抛物线C上异于A,B的点,直线PA与PB分别交抛物线C的准线于E,G两点,x轴与准线的交点为H,求证:HGHE为定值,并求出定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中
(1)在等差数列
中,
是
的充要条件;
(2)已知等比数列
为递增数列,且公比为
,若
,则当且仅当
;
(3)若数列
为递增数列,则
的取值范围是
;
(4)已知数列
满足
,则数列
的通项公式为![]()
(5)若
是等比数列
的前
项的和,且
;(其中
、
是非零常数,
),则A+B为零.
其中正确命题是_________(只需写出序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com