分析 先求出函数的导数,解关于导函数的不等式,从而求出其递减区间.借助第一问列出不等式求解函数的增区间时的a的范围.
解答 解:函数f(x)=x+$\frac{a}{x}$,f′(x)=1-$\frac{a}{{x}^{2}}$=$\frac{{x}^{2}-a}{{x}^{2}}$,
令y′<0,即x2-a<0解得:-$\sqrt{a}$<x<$\sqrt{a}$,且x≠0,
函数f(x)=x+$\frac{a}{x}$(a>0)的单调减区间为:(-$\sqrt{a}$,0),(0,$\sqrt{a}$).
f(x)在[a-2,+∞)上是增函数,可得a-2$≥\sqrt{a}$,a>0,解得a≥4.
故答案为:(-$\sqrt{a}$,0),(0,$\sqrt{a}$);[4,+∞)
点评 本题考查了函数的单调性问题,导数的应用,考查转化思想以及计算能力,是一道基础题.
科目:高中数学 来源: 题型:解答题
| 不常吃零食 | 常吃零食 | 总计 | |
| 不患龋齿 | |||
| 患龋齿 | |||
| 总计 |
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 平均每天运动的时间 | [0,0.5) | [0.5,1) | [1,1.5) | [1.5,2) | [2,2.5) | [2.5,3] |
| 人数 | 2 | 12 | 23 | 18 | 10 | x |
| 平均每天运动的时间 | [0,0.5) | [0.5,1) | [1,1.5) | [1.5,2) | [2,2.5) | [2.5,3] |
| 人数 | 5 | 12 | 18 | 10 | 3 | y |
| 运动达人 | 非运动达人 | 总 计 | |
| 男 生 | |||
| 女 生 | |||
| 总 计 |
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com