精英家教网 > 高中数学 > 题目详情
在正方体ABCD-A1B1C1D1中,如图E、F分别是BB1,CD的中点.
(Ⅰ)求证:平面AD1F⊥平面ADE;
(Ⅱ)求直线EF与AD1F所成角的正弦值.
考点:平面与平面垂直的判定,直线与平面所成的角
专题:空间角
分析:(1)设棱长为2,以D为原点,建立空间直角坐标系,利用微量 法能证明平面AD1F⊥平面ADE.
(Ⅱ)由
EF
=(-2,-1,-1),平面AD1F的法向量
m
=(1,2,1),利用向量法能求出直线EF与AD1F所成角的正弦值.
解答: (1)证明:设棱长为2,以D为原点,
建立如图所示的空间直角坐标系,
则D(0,0,0),A(2,0,0),E(2,2,1),
F(0,1,0),D1(0,0,2),
DA
=(2,0,0)
DE
=(2,2,1)

AD1
=(-2,0,2)
AF
=(-2,1,0),
设平面ADE的法向量
n
=(x,y,z)

n
DA
=2x=0
n
DE
=2x+2y+z=0

取y=1,得
n
=(0,1,-2)

设平面AD1F的法向量
m
=(a,b,c)

m
AD1
=-2a+2c=0
m
AF
=-2a+b=0
,取a=1,得
m
=(1,2,1),
n
m
=0+2-2=0,
∴平面AD1F⊥平面ADE.
(Ⅱ)解:设直线EF与平面AD1F所成角的为θ,
EF
=(-2,-1,-1),平面AD1F的法向量
m
=(1,2,1),
∴sinθ=|cos<
EF
m
>|=|
-2-2-1
6
6
|=
5
6

直线EF与AD1F所成角的正弦值
5
6
点评:本题考查平面与平面垂直的证明,考查直线与平面所成角的正弦值的求法,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点O(0,0),A(-1,1),若F为双曲线x2-y2=1的右焦点,P是该双曲线上且在第一象限的动点,则
OA
FP
的取值范围为(  )
A、(
2
-1,1)
B、(
2
-1,
2
C、(1,
2
D、(
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆的中心在原点,准线方程为x=±
9
2
,长轴长为6的椭圆方程为(  )
A、
x2
81
+
y2
77
=1
B、
x2
9
+
y2
5
=1
C、
x2
9
+
y2
4
=1
D、
x2
3
+
y2
5
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=1,an+1
1
an2
+4
=1,记Sn=a12+a22+a32+…+an2,若S2n-1-Sn
m
30
对任意n∈N*恒成立,则正整数m的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项之和Sn=n2+n.
(1)求数列的通项公式an
(2)设bn=
2
(n+1)an
,Tn=b1+b2+…+bn,求T2013

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足:a1=2,a2=3,Sn+1+Sn-1=2Sn+1(n≥2,n∈N*),Sn为数列{an}的前n项和.
(1)求证:数列{an}为等差数列;
(2)设bn=2n•an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=anlog
1
2
an,Sn=b1+b2+…+bn,求使Sn+n•2n+1>50成立的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线C的离心率为2,其中一个焦点F(2,0)
(1)求双曲线C的标准方程;
(2)若直线l斜率为2且过点F,求直线l被双曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2alnx-x+
1
x
,(a∈R,且a≠0);g(x)=-x2-x+2
2
b.
(Ⅰ)若f(x)在定义域上有极值,求实数a的取值范围;
(Ⅱ)若对?x1∈[1,e],总?x2∈[1,e],使得f(x1)<g(x2),则等价为fmax(x)<gmax(x),利用导数与最值之间的关系,即可求实数b的取值范围.
(Ⅲ)对?n∈N,且n≥2,证明:ln(n!)4<(n-1)(n+2).

查看答案和解析>>

同步练习册答案