精英家教网 > 高中数学 > 题目详情
15.在[-2,2]上作函数y=2|x+1|+|x|+|x-1|的图象,并解不等式y=2|x+1|+|x|+|x-1|>5.

分析 利用已知条件化简函数的解析式,然后画出函数的图象,借助函数的图象求解不等式的解集即可.

解答 解:函数y=2|x+1|+|x|+|x-1|=$\left\{\begin{array}{l}-4x-1,x∈[-2,-1]\\ 3,x∈(-1,0]\\ 2x+3,x∈(0,1]\\ 4x+1,x∈(1,2]\end{array}\right.$,
函数的图象如图:

2|x+1|+|x|+|x-1|>5.
由函数的图象可得:x>1或$\left\{\begin{array}{l}x<-1\\-4x-1>5\end{array}\right.$,
解得x>1或x$<-\frac{3}{2}$.

点评 本题考查函数的解析式的化简,函数的图象的作法,绝对值不等式的解法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,将一个边长为1的正三角形的每条边三等分,以中间一段为边向形外作正三角形,并擦去中间一段,得图(2).如此继续下去,得图(3)…,记第n个图形的边长an、周长为bn

(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)若第n个图形的面积为Sn,试探求Sn,Sn-1,(n≥2)满足的关系式,并证明Sn<$\frac{2\sqrt{3}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将两个数a=8,b=17交换,下面语句正确一组是(  )
a=cc=bb=a
b=aa=b
c=bb=aa=c
a=bb=a.
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知z1,z2是复数,下列结论错误的是(  )
A.若|z1-z2|=0,则$\overline{{z}_{1}}$=$\overline{{z}_{2}}$B.若 z1=$\overline{{z}_{2}}$,则$\overline{{z}_{1}}$=z2
C.若|z1|=|z2|,则z1•$\overline{{z}_{1}}$=z2$\overline{{z}_{2}}$D.若|z1|=|z2|,则z12=z22

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=sin(x-$\frac{π}{6}$)的图象如图所示,则图中的阴影部分的面积为$\frac{2-\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,$\overrightarrow{c}$=$\overrightarrow{a}$-k$\overrightarrow{b}$(k∈R),则$\frac{|\overrightarrow{a}|}{|\overrightarrow{c}|}$的最大值为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知A={x|1≤x≤5},B={x|(x-a+1)(x-a-1)≤0},条件p:x∈A,条件q:x∈B,若?p是?q的充分不必要条件,则实数a的取值范围是(  )
A.(2,4]B.[2,4]C.[2,4)D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2+|x-a|+1,x∈R,
(1)当a=0时,判断函数f(x)的奇偶性;
(2)当$a=\frac{1}{2}$时,求函数f(x)的单调区间;
(3)当$a≥-\frac{1}{2}$时,求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点A(-4,1),B(3,-1),若直线y=kx+2与线段AB恒有公共点,则实数k的取值范围是$(-∞,-1]∪[\frac{1}{4},+∞)$.

查看答案和解析>>

同步练习册答案