精英家教网 > 高中数学 > 题目详情
5.如图,将一个边长为1的正三角形的每条边三等分,以中间一段为边向形外作正三角形,并擦去中间一段,得图(2).如此继续下去,得图(3)…,记第n个图形的边长an、周长为bn

(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)若第n个图形的面积为Sn,试探求Sn,Sn-1,(n≥2)满足的关系式,并证明Sn<$\frac{2\sqrt{3}}{5}$.

分析 (1)根据图形关系,建立图形边长和周长之间的关系即可求出数列的通项公式.
(2)根据归纳推理,求出两个图形的面积之间的关系,结合等比数列的通项公式进行求和即可得到结论.

解答 解:(Ⅰ)由题意知,从第2个图形起,每一个图形的边长均为上一个图形边长的$\frac{1}{3}$所以数列{an}是首项为1,公比为$\frac{1}{3}$的等比数列,则an=($\frac{1}{3}$)n-1
设第n个图形的边数为cn,因为第1个图形的边数为3,从第2个图形起,每一个图形的边数均为上一个图形边数的4倍,则cn=3×4n-1
因此,第n个图形的周长bn=an×cn=($\frac{1}{3}$)n-1×3×4n-1=3×($\frac{4}{3}$)n-1
(Ⅱ)S1=$\frac{\sqrt{3}}{4}$,当n≥2时,Sn=Sn-1+cn×($\frac{\sqrt{3}}{4}$×an2)=Sn-1+3×4n-2×$\frac{\sqrt{3}}{4}$×[($\frac{1}{3}$)n-1]2=Sn-1+$\frac{3\sqrt{3}}{16}$×($\frac{4}{9}$)n-1
则Sn=S1+(S2-S1)+(S3-S2)+…+(Sn-Sn-1),
=$\frac{\sqrt{3}}{4}$+$\frac{3\sqrt{3}}{16}$[$\frac{4}{9}$+($\frac{4}{9}$)2+($\frac{4}{9}$)3+…++($\frac{4}{9}$)n-1],
=$\frac{\sqrt{3}}{4}$+$\frac{3\sqrt{3}}{16}$×$\frac{\frac{4}{9}[1-(\frac{4}{9})^{n-1}]}{1-\frac{4}{9}}$,
=$\frac{2\sqrt{3}}{5}$-$\frac{3\sqrt{3}}{20}$×($\frac{4}{9}$)n-1
∴Sn<$\frac{2\sqrt{3}}{5}$.

点评 本题主要考查数列通项公式和前n项和公式的应用,根据归纳推理建立数列的递推关系是解决本题的关键.综合性较强,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若全集U={x|x≤5,x∈N*},集合A={1,3,4},B={2,4},则(∁UA)∪B为(  )
A.{2,4,5}B.{1,3,4}C.{1,2,4}D.{2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.2014 年12 月28 日开始,北京市公共电汽车和地铁按照里程分段计价.具体如下表.(不考虑公交卡折扣情况)
乘公共汽车方案10公里(含)内2元;
10公里以上部分,每增加1元可乘坐5公里(含)
乘坐地铁方案(不含机场线)6公里(含)内3元
6公里至12公里(含)4元
12公里至22公里(含)5元
22公里至32公里(含)6元
32公里以上部分,每增加1元可乘坐20公里(含)
已知在北京地铁四号线上,任意一站到陶然亭站的票价不超过5 元,现从那些只乘坐四号线地铁,且在陶然亭出站的乘客中随机选出120 人,他们乘坐地铁的票价统计如图所示.
(Ⅰ)如果从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中任选1 人,试估计此人乘坐地铁的票价小于5 元的概率;
(Ⅱ)从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选2 人,记x 为这2人乘坐地铁的票价和,根据统计图,并以频率作为概率,求X 的分布列和数学期望;
(Ⅲ)小李乘坐地铁从A 地到陶然亭的票价是5 元,返程时,小李乘坐某路公共电汽车所花交通费也是5 元,假设小李往返过程中乘坐地铁和公共电汽车的路程均为s 公里,试写出s 的取值范围.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=xlnx.
(Ⅰ)函数f(x)的单调增区间和最小值;
(Ⅱ)设函数h(x)=$\frac{f(x)}{x+1}$,若对任意x∈[1,+∞),h(x)≤m(x-1)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某电信公司从所在地的1000名使用4G手机用户中,随机抽取了20名,对其收集每日使用流量(单位:M)进行统计,得到如下数据:
流量x0≤x<55≤x<1010≤x<1515≤x<2020≤x<25x≥25
人数166520
(1)估计这20名4G手机用户每日使用流量(单位:M)的平均值;
(2)估计此地1000名使用4G手机用户中每日使用流量不少于10M用户数;
(3)在15≤x<20和20≤x<25两组用户中,随机抽取两人作进一步问卷调查,求所抽取的两人恰好来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.复数$\frac{1+2i}{3-4i}$的虚部为(  )
A.$-\frac{1}{5}$B.$-\frac{i}{5}$C.$\frac{2i}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列四个命题中
p1:?x∈(0,+∞),($\frac{1}{2}$)x<($\frac{1}{3}$)x
p2:?x∈(0,1),log${\;}_{\frac{1}{2}}$x>log${\;}_{\frac{1}{3}}$x;
p3:?x∈(0,+∞),($\frac{1}{2}$)x<($\frac{1}{3}$)x
p4::?x∈(0,$\frac{1}{3}$),($\frac{1}{2}$)x<log${\;}_{\frac{1}{3}}$x
其中真命题是(  )
A.p1,p3B.p1,p4C.p2,p3D.p2,p4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.将二进制数11010(2)化为八进制数为32(8)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在[-2,2]上作函数y=2|x+1|+|x|+|x-1|的图象,并解不等式y=2|x+1|+|x|+|x-1|>5.

查看答案和解析>>

同步练习册答案