精英家教网 > 高中数学 > 题目详情
17.下列四个命题中
p1:?x∈(0,+∞),($\frac{1}{2}$)x<($\frac{1}{3}$)x
p2:?x∈(0,1),log${\;}_{\frac{1}{2}}$x>log${\;}_{\frac{1}{3}}$x;
p3:?x∈(0,+∞),($\frac{1}{2}$)x<($\frac{1}{3}$)x
p4::?x∈(0,$\frac{1}{3}$),($\frac{1}{2}$)x<log${\;}_{\frac{1}{3}}$x
其中真命题是(  )
A.p1,p3B.p1,p4C.p2,p3D.p2,p4

分析 对四个命题分别进行判断,即可得出结论.

解答 解:p1:?x∈(0,+∞),($\frac{1}{2}$)x>($\frac{1}{3}$)x,故p1不正确;
p2:?x∈(0,1),log${\;}_{\frac{1}{2}}$x>log${\;}_{\frac{1}{3}}$x;故正确;
p3:?x∈(0,+∞),($\frac{1}{2}$)x>($\frac{1}{3}$)x,故不正确;
p4::?x∈(0,$\frac{1}{3}$),($\frac{1}{2}$)x<1<log${\;}_{\frac{1}{3}}$x,故正确.
故选:D.

点评 本题考查命题的真假判断,考查指数、对数函数的性质,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知椭圆$\frac{x^2}{25}$+$\frac{y^2}{9}$=1的两个焦点为F1,F2,P为椭圆上一点,∠F1PF2
(1)求椭圆的长轴长,短轴长,顶点,离心率.
(2)求证:$S_{△{F_1}P{F_2}}$=9tan$\frac{θ}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.(1-x-3y)5的展开式中不含x的项的系数和为(  )
A.32B.-32C.64D.-64

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,将一个边长为1的正三角形的每条边三等分,以中间一段为边向形外作正三角形,并擦去中间一段,得图(2).如此继续下去,得图(3)…,记第n个图形的边长an、周长为bn

(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)若第n个图形的面积为Sn,试探求Sn,Sn-1,(n≥2)满足的关系式,并证明Sn<$\frac{2\sqrt{3}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=\frac{x}{4}+\frac{5}{4x}-lnx-\frac{3}{2}$.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.球的体积与其表面积的数值相等,则球的表面积等于(  )
A.πB.C.16πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知$cos(\frac{π}{6}+α)=-\frac{1}{3}$,则$sin(α-\frac{π}{3})$的值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将两个数a=8,b=17交换,下面语句正确一组是(  )
a=cc=bb=a
b=aa=b
c=bb=aa=c
a=bb=a.
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知A={x|1≤x≤5},B={x|(x-a+1)(x-a-1)≤0},条件p:x∈A,条件q:x∈B,若?p是?q的充分不必要条件,则实数a的取值范围是(  )
A.(2,4]B.[2,4]C.[2,4)D.(2,4)

查看答案和解析>>

同步练习册答案