分析 (1)根据两直线垂直,斜率之积等于-1,求出a=-2,把两直线的方程联立方程组求得交点的坐标;
(2)分类讨论,当直线过原点,即截距都为零,易得直线方程;当直线不过原点,由截距式,设出直线方程,把P点坐标带入,能求出结果.
解答 解:(1)由题意可得-2×(-$\frac{a}{4}$)=-1,∴a=-2.
两直线即2x+y+2=0与-2x+4y-2=0.
联立两直线方程,
可得交点的坐标为(-1,0),
(2)当直线过原点,即截距都为零时,
直线经过原点(0,0),P(-2,-3),
直线方程为$\frac{y}{x}$=$\frac{-3}{-2}$,
整理,得直线方程为3x-2y=0;
当直线不过原点,
由截距式,设直线方程为 $\frac{x}{a}$+$\frac{y}{a}$=1,
把P(-2,-3)代入,得x+y+5=0.
故直线方程是:x+y+5=0或3x-2y=0.
点评 本题考查直线方程的求法,是基础题,解题时要认真审题,注意分类讨论思想的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若z是复数,则|z|2=z2 | |
| B. | 任意两个复数不能比较大小 | |
| C. | 当b2-4ac>0时,一元二次方程ax2+bx+c=0(a、b、c∈C)有两个不相等的实数根 | |
| D. | 在复平面xOy上,复数z=m2+mi(m∈R,i是虚数单位)对应的点的轨迹方程是y2=x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 任意x∈R,|x|<0 | B. | 任意x∈R,|x|≤0 | C. | 彐x∈R,|x|<0 | D. | 彐x∈R,|x|≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com