【题目】在平面直角坐标系中,已知椭圆的方程为:,动点在椭圆上,为原点,线段的中点为.
(1)以为极点,轴的正半轴为极轴,建立极坐标系,求点的轨迹的极坐标方程;
(2)设直线的参数方程为(为参数),与点的轨迹交于、两点,求弦长.
【答案】(1)(2)
【解析】
(1)先由相关点法求出点的轨迹方程,再由极坐标与直角坐标转化的公式,即可得出结果;
(2)将直线的参数方程代入点的普通轨迹方程,得到关于的一元二次方程,由韦达定理和即可求出弦长.
(1)设点的坐标为,为线段的中点,
点的坐标为.
由点在椭圆上得,
化简得点的轨迹的直角坐标方程为①
将,,代入①得,
化简可得点的轨迹的极坐标方程为.
(2)(法一)把直线参数方程 (为参数)代入①得,
化简得:
设、两点对应的参数分别为,,由直线参数方程的几何意义得
弦长.
(法二)由直线参数方程 (为参数)知,直线过极点,倾斜角为,
直线的极坐标方程为.
由解得:和
弦长.
(法三)由直线参数方程 (为参数)知,
直线的普通方程为,
联立解得和
弦长.
科目:高中数学 来源: 题型:
【题目】一个工厂在某年连续10个月每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据:
x | 1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 |
y | 2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通过画散点图,发现可用线性回归模型拟合y与x的关系,请用相关系数加以说明;
(2)①建立月总成本y与月产量x之间的回归方程;
②通过建立的y关于x的回归方程,估计某月产量为1.98万件时,此时产品的总成本为多少万元?
(均精确到0.001)
附注:①参考数据:,
,
②参考公式:相关系数,
回归方程中斜率和截距的最小二乘估计公式分别为:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】商品价格与商品需求量是经济学中的一种基本关系,某服装公司需对新上市的一款服装制定合理的价格,需要了解服装的单价x(单位:元)与月销量y(单位:件)和月利润z(单位:元)的影响,对试销10个月的价格和月销售量()数据作了初步处理,得到如图所示的散点图及一些统计量的值.
x | y | |||||
61 | 0.018 | 372 | 2670 | 26 | 0.0004 |
表中.
(1)根据散点图判断,与哪一个适宜作为需求量y关于价格x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;
(3)已知这批服装的成本为每件10元,根据(1)的结果回答下列问题;
(i)预测当服装价格时,月销售量的预报值是多少?
(span>ii)当服装价格x为何值时,月利润的预报值最大?(参考数据)
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】每年的月日是全国爱牙日,为了迎接这一节日,某地区卫生部门成立了调查小组,调查“常吃零食与患龋齿的关系”,对该地区小学六年级名学生进行检查,按患龋齿的不患龋齿分类,得汇总数据:不常吃零食且不患龋齿的学生有名,常吃零食但不患龋齿的学生有名,不常吃零食但患齲齿的学生有名.
(1)完成答卷中的列联表,问:能否在犯错率不超过的前提下,认为该地区学生的常吃零食与患龋齿有关系?
(2)名区卫生部门的工作人员随机分成两组,每组人,一组负责数据收集,另一组负责数据处理,求工作人员甲分到负责收集数据组,工作人员乙分到负责数据处理组的概率.
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,圆C的直角坐标方程为,直线l的参数方程为(t为参数),射线OM的极坐标方程为.
(1)求圆C和直线l的极坐标方程;
(2)已知射线OM与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l:3x﹣4y+t=0,圆C1经过点A(0,1)与B(2,1),且被y轴的正半轴截得的线段长为2.
(1)求圆C1的方程;
(2)设圆C2是以直线l上的点为圆心的单位圆,若存在圆C2与圆C1有交点,求t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com