精英家教网 > 高中数学 > 题目详情
已知f(x-1)=x2,则f(x)的解析式为(  )
A、f(x)=x2-2x-1
B、f(x)=x2-2x+1
C、f(x)=x2+2x-1
D、f(x)=x2+2x+1
考点:二次函数的性质
专题:函数的性质及应用
分析:本题可以利用换元法求函数的解析式,得到本题结论.
解答: 解:∵f(x-1)=x2
令x-1=t,则x=t+1,
∴f(t)=(t+1)2
∴f(x)=x2+2x+1.
故选D.
点评:本题考查了函数解析式的求法,本题难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在正方形ABCD中,E为AB的中点,P为线段BD上的任意一点,设向量
AC
DE
AP
,则λ+μ的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是(  )
A、若m∥α,n∥α,则m∥n
B、若m∥n,m⊥α,n?β,则α⊥β
C、若m∥α,m∥β,则α∥β
D、若m∥α,α⊥β,则m⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:

某市为了解全市居民日常用水量的分布情况,现采用抽样调查的方式,获得了n位居民某年的月均用水量(单位:t),样本统计结果如图表:
(Ⅰ)分别求出x,n,y的值;
(Ⅱ)若从样本中月均用水量在[5,6]内的5位居民a,b,c,d,e中任选2人作进一步的调查研究,求居民a被选中的概率.
分组频数频率
[0,1)25y
[1,2)0.19
[2,3)50x
[3,4)0.23
[4,5)0.18
[5,6]5

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论中是错误命题的是(  )
A、命题p:“?x∈R,x2-2≥0”的否定形式为¬p:“?x∈R,x2-2<0”
B、若¬p是q的必要条件,则p是¬q的充分条件
C、“M>N”是“(
2
3
M>(
2
3
N”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知,在△ABC中,角A,B,C的对边分别是a,b,c,若(2a-c)
AB
BC
=c
BC
CA

(Ⅰ)求∠B的大小;
(Ⅱ)若f(x)=2sin2x•cos
B
2
+2cos2x•sin
B
2
,x∈[-
12
π
12
],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校要建一个面积为450平方米的矩形球场,要求球场的一面利用旧墙,其他各面用钢筋网围成,且在矩形一边的钢筋网的正中间要留一个3米的进出口(如图).设矩形的长为x米,钢筋网的总长度为y米.
(1)列出y与x的函数关系式,并写出其定义域;
(2)问矩形的长与宽各为多少米时,所用的钢筋网的总长度最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

直线x=a和函数y=x2+x-1的图象公共点的个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程|x2-2x-3|-m+5=0有4个根,则m的取值范围为(  )
A、(5,9)
B、[5,9]
C、(-1,3)
D、[-1,3]

查看答案和解析>>

同步练习册答案