精英家教网 > 高中数学 > 题目详情
某车间20名工人年龄数据如下表:
年龄(岁)工人数(人)
191
283
293
305
314
323
401
合计20
(1)求这20名工人年龄的众数与极差;
(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(3)求这20名工人年龄的方差.
考点:极差、方差与标准差,茎叶图,众数、中位数、平均数
专题:概率与统计
分析:(1)根据众数和极差的定义,即可得出;
(2)根据画茎叶图的步骤,画图即可;
(3)利用方差的计算公式,代入数据,计算即可.
解答: 解:(1)这这20名工人年龄的众数为30,极差为40-19=21;

(2)茎叶图如下:


(3)年龄的平均数为:
19+28×3+29×3+30×5+31×4+32×3+40
20
=30.
这20名工人年龄的方差为S2=
1
20
[(19-30)2+3×(28-30)2+3×(29-30)2+5×(30-30)2+4×(31-30)2+3×(32-30)2+(40-30)2]=12.6.
点评:本题考查了众数,极差,茎叶图,方差的基本定义,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,某飞行器在4千米高空飞行,从距着陆点A的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图象的一部分,则该函数的解析式为(  )
A、y=
1
125
x3
-
3
5
x
B、y=
2
125
x3-
4
5
x
C、y=
3
125
x3-x
D、y=-
3
125
x3+
1
5
x

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:?x∈R,x2+1>0,则¬p为(  )
A、?x0∈R,x02+1>0
B、?x0∈R,x02+1≤0
C、?x0∈R,x02+1<0
D、?x∈R,x2+1≤0

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=(  )
A、21B、19C、9D、-11

查看答案和解析>>

科目:高中数学 来源: 题型:

乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D,某次测试要求队员接到落点在甲上的来球后向乙回球,规定:回球一次,落点在C上记3分,在D上记1分,其它情况记0分.对落点在A上的来球,小明回球的落点在C上的概率为
1
2
,在D上的概率为
1
3
;对落点在B上的来球,小明回球的落点在C上的概率为
1
5
,在D上的概率为
3
5
.假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响,求:
(Ⅰ)小明两次回球的落点中恰有一次的落点在乙上的概率;
(Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin(ωx+φ)(ω>0,-
π
2
≤φ<
π
2
)的图象关于直线x=
π
3
对称,且图象上相邻两个最高点的距离为π.
(Ⅰ)求ω和φ的值;
(Ⅱ)若f(
α
2
)=
3
4
π
6
<α<
3
),求cos(α+
2
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3-3x.
(1)当a=1,求函数f(x)的极值;
(2)若函数f(x)在区间[1,2]上的最小值为4,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:
(Ⅰ)求频率分布直方图中a的值;
(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;
(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2分别是椭圆E:x2+
y2
b2
=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为
 

查看答案和解析>>

同步练习册答案