精英家教网 > 高中数学 > 题目详情
20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:
(Ⅰ)求频率分布直方图中a的值;
(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;
(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.
考点:古典概型及其概率计算公式,频率分布直方图
专题:概率与统计
分析:(Ⅰ)根据频率分布直方图求出a的值;
(Ⅱ)由图可知,成绩在[50,60)和[60,70)的频率分别为0.1和0.15,用样本容量20乘以对应的频率,即得对应区间内的人数,从而求出所求.
(Ⅲ)分别列出满足[50,70)的基本事件,再找到在[60,70)的事件个数,根据古典概率公式计算即可.
解答: 解:(Ⅰ)根据直方图知组距=10,由(2a+3a+6a+7a+2a)×10=1,解得a=0.005.
(Ⅱ)成绩落在[50,60)中的学生人数为2×0.005×10×20=2,
成绩落在[60,70)中的学生人数为3×0.005×10×20=3.
(Ⅲ)记成绩落在[50,60)中的2人为A,B,成绩落在[60,70)中的3人为C,D,E,则成绩在[50,70)的学生任选2人的基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10个,
其中2人的成绩都在[60,70)中的基本事件有CD,CE,DE共3个,
故所求概率为P=
3
10
点评:本题考查频率分布直方图的应用以及古典概型的概率的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)为偶函数,当x≥0时,f(x)=
cosπx,x∈[0,
1
2
]
2x-1,x∈(
1
2
,+∞)
,则不等式f(x-1)≤
1
2
的解集为(  )
A、[
1
4
2
3
]∪[
4
3
7
4
]
B、[-
3
4
,-
1
3
]∪[
1
4
2
3
]
C、[
1
3
3
4
]∪[
4
3
7
4
]
D、[-
3
4
,-
1
3
]∪[
1
3
3
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

某车间20名工人年龄数据如下表:
年龄(岁)工人数(人)
191
283
293
305
314
323
401
合计20
(1)求这20名工人年龄的众数与极差;
(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(3)求这20名工人年龄的方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R+上有定义,且满足以下条件:①f(x)在R+上严格单调递减,且x2f(x)>1.②在R+上恒有f2(x)f(f(x)-
1
x2
)=f3(1).
(1)求函数值f(1);
(2)给出一个满足题设条件的函数f(x)并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α∈(
π
2
,π),sinα=
5
5

(1)求sin(
π
4
+α)的值;
(2)求cos(
6
-2α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)(x∈[-2,6])的图象如图.根据图象写出:
(1)函数y=f(x)的最大值;
(2)使f(x)=1的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵A的逆矩阵A-1=(
21
12
).
(1)求矩阵A;
(2)求矩阵A-1的特征值以及属于每个特征值的一个特征向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,曲线C1与C2的方程分别为2ρcos2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1与C2交点的直角坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是
 

查看答案和解析>>

同步练习册答案