精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)(x∈[-2,6])的图象如图.根据图象写出:
(1)函数y=f(x)的最大值;
(2)使f(x)=1的x值.
考点:函数的图象
专题:函数的性质及应用
分析:由题意,直接由图象找出相应的值得出答案即可
解答: 解:(1)由图知,函数的最大值为2.
(2)f(x)=1的x值为-1,5.
点评:本题考查函数识图能力,正确识图是关键
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设z=
10i
3+i
,则z的共轭复数为(  )
A、-1+3iB、-1-3i
C、1+3iD、1-3i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin(ωx+φ)(ω>0,-
π
2
≤φ<
π
2
)的图象关于直线x=
π
3
对称,且图象上相邻两个最高点的距离为π.
(Ⅰ)求ω和φ的值;
(Ⅱ)若f(
α
2
)=
3
4
π
6
<α<
3
),求cos(α+
2
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(4x2+4ax+a2
x
,其中a<0.
(1)当a=-4时,求f(x)的单调递增区间;
(2)若f(x)在区间[1,4]上的最小值为8,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:
(Ⅰ)求频率分布直方图中a的值;
(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;
(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知a,b,c是不全相等的正数,求证:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc;
(2)求证:
6
+
7
>2
2
+
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(x+
π
3
),x∈R,且f(
12
)=
3
2
2

(1)求A的值;
(2)若f(θ)-f(-θ)=
3
,θ∈(0,
π
2
),求f(
π
6
-θ).

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A=60°,AC=4,BC=2
3
,则△ABC的面积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合{a,b,c,d}={1,2,3,4},且下列四个关系:
①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是
 

查看答案和解析>>

同步练习册答案