精英家教网 > 高中数学 > 题目详情
精英家教网如图,在直角梯形ABCD中,∠B=90°,DC∥AB,BC=CD=
12
AB=2,G为线段AB的中点,将△ADG沿GD折起,使平面ADG⊥平面BCDG,得到几何体A-BCDG.
(1)若E,F分别为线段AC,AD的中点,求证:EF∥平面ABG;
(2)求三棱锥C-ABD的体积.
分析:(1)利用三角形的中位线定理和线面平行的判定定理即可证明;
(2)先证明AG⊥底面BCD,再利用V三棱锥C-ABD=V三棱锥A-BCD即可求出.
解答:解(1)∵折叠前后CD、BG的位置关系不变,∴CD∥BG.
∵在△ACD中,E、F分别为AC、BD的中点,∴EF∥CD.
∴EF∥BG.
又∵EF?平面ABG,BG?平面ABG,
∴EF∥平面ABG.
(2)∵BC=CD=
1
2
AB=2,G为线段AB的中点,∴CD=BG,
又∵∠B=90°,CD∥BG,∴四边形BCDG是一个正方形,∴BG⊥DG,AG⊥DG,
折叠后仍然成立,
∵平面ADG⊥平面BCDG,∴AG⊥平面BCDG.
∴V三棱锥C-ABD=V三棱锥A-BCD=
1
3
AG×S△BCD
=
1
3
×2×
1
2
×2×2
=
4
3
点评:熟练掌握三角形的中位线定理、线面平行的判定定理及面面、线面垂直的判定和性质定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,SD=
2
a.
(Ⅰ)求证:平面SAB⊥平面SAD;
(Ⅱ)设SB的中点为M,且DM⊥MC,试求出四棱锥S-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2.点E、F分别是PC、BD的中点,现将△PDC沿CD折起,使PD⊥平面ABCD,
(1)求证:EF∥平面PAD;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,AD=CD=1,AB=3,动点P在BCD内运动(含边界),设
AP
AD
AB
,则α+β的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=4,BC=2,AD=4,若P为CD的中点,则
PA
PB
的值为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AD=1,AB=2,CD=3,E、F分别为线段CD、AB上的点,且EF∥AD.将梯形沿EF折起,使得平面ADEF⊥平面BCEF,折后BD与平面ADEF所成角正切值为
2
2

(Ⅰ)求证:BC⊥平面BDE;
(Ⅱ)求平面BCEF与平面ABD所成二面角(锐角)的大小.

查看答案和解析>>

同步练习册答案