精英家教网 > 高中数学 > 题目详情
10.已知抛物线y2=2px(p>0)的准线与曲线4x2-$\frac{{3{y^2}}}{4}$=1(y>0)交于点P,F为抛物线的焦点,直线PF的倾斜角为135°.则p=2.

分析 由题意可知:∠PFD=∠DPF=45°,△PDF为等腰直角三角形,PD=DF=p,利用抛物线的性质,即可求得P点坐标,代入双曲线方程,即可求得p的值.

解答 解:由题意可知:过点P做PD⊥DF,
的倾斜角为135°,
∴∠PFD=∠DPF=45°,
∴△PDF为等腰直角三角形,
∴PD=DF=p,
由抛物线的性质可知,P的横坐标为:x=-$\frac{p}{2}$,
∴P点坐标为(-$\frac{p}{2}$,p),
代入双曲线4x2-$\frac{{3{y^2}}}{4}$=1,整理得:p2=4,
由p>0,
∴P=2,
故答案为:2.

点评 本题考查抛物线的方程及抛物线性质的简单应用,考查数形结合思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x+1|-|x|+a.
(1)若a=0,求不等式f(x)≥x的解集;
(2)若对任意x∈R,f(x)≥0恒成立,求a的范围;
(3)若方程f(x)=x有三个不同的解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=x2+$\sqrt{{x^2}-1}$中y的取值范围是(  )
A.y≥0B.y≥1C.$y≥\frac{3}{4}$D.$\frac{3}{4}≤y≤1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知方程mx2+(m-4)y2=2m+2表示焦点在x轴上的双曲线.
(1)求m的取值范围;
(2)当m=2时,直线y=kx+2与双曲线右支交于不同的两点A、B,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将正三棱柱截去三个角(如图甲所示,A,B,C分别是三边的中点)得到几何图形乙.则该几何体的正视图为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知幂函数f(x)=xα(α为常数)的图象过点(2,8),则f(3)=27.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设Sn为数列{an}的前n项和,若a1=1,a2=2,a2n+1-a2n-1=2,a2n+2=2a2n,则当Sm=1122时,m=(  )
A.18B.19C.20D.21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知定义在R上的函数f(x)和g(x)满足g(x)≠0,f′(x)•g(x)<f(x)•g′(x),f(x)=ax•g(x),$\frac{f(1)}{g(1)}+\frac{f(-1)}{g(-1)}=\frac{5}{2}$.令${a_n}=\frac{f(n)}{g(n)}$,则使数列{an}的前n项和Sn超过$\frac{15}{16}$的最小自然数n的值为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一空间几何体的三视图如图所示,则该几何体的表面积是(  )
A.24π+4$\sqrt{5}$πB.20π+4$\sqrt{5}$πC.24π+8$\sqrt{5}$πD.20π+8$\sqrt{5}$π

查看答案和解析>>

同步练习册答案