分析 (Ⅰ)由已知结合余弦定理可得cosA,从而求得A;
(Ⅱ)设DC为1个单位长度,则BD=2,在Rt△ABD中,则AB=BDcosB=2cosB.在△ADC中,由正弦定理可得AB=AC,则角B可求.
解答 解:(Ⅰ)由$cosB=\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$,得$2({a}^{2}-{b}^{2})=2ac•\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}+bc$,
即b2+c2-a2=-bc,
∴$cosA=\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}=-\frac{1}{2}$,
∵0<A<π,∴A=$\frac{2}{3}π$;
(Ⅱ)设DC为1个单位长度,则BD=2,
在Rt△ABD中,AB=BDcosB=2cosB.
在△ADC中,由正弦定理$\frac{CD}{sin∠DAC}=\frac{AC}{sin∠ADC}$,即$\frac{1}{sin(\frac{2π}{3}-\frac{π}{2})}=\frac{AC}{sin(B+\frac{π}{2})}$,
∴AC=2cosB,则AB=AC.
故B=C=$\frac{π}{6}$.
点评 本题考查三角形的解法,考查了正弦定理和余弦定理的应用,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 随机误差由解释变量和预报变量共同确定 | |
| B. | 预报变量只由解释变量确定 | |
| C. | 预报变量由解释变量和随机误差共同确定 | |
| D. | 随机误差只由预报变量确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在(-∞,1)∪(1,+∞)递减 | B. | 在(-∞,0)和(0,+∞,)递减 | ||
| C. | 在(-∞,1)∪(1,+∞)递增 | D. | 在(-∞,0)和(0,+∞)递增 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com