精英家教网 > 高中数学 > 题目详情
6.已知集合A={x|-2≤x≤4},B={x|-m+1≤x≤2m-1}.
(1)若m=2,求A∪B,A∩(∁RB);
(2)若 B⊆A,求m的取值范围.

分析 (1)根据集合的并集和补集交集的定义即可求出;
(2)根据集合与集合的关系,对B进行分类讨论.

解答 解:(1)∵若m=2,则B={x|-1≤x≤3},A={x|-2≤x≤4},
∴∁RB{x|x<-1或x>3},
∴A∪B={x|-2≤x≤4},
∴A∩(∁RB)={x|-2≤x<-1或3<x≤4},
(2)∵B⊆A,
当B=∅时满足题意,即-m+1>2m-1,解得m<$\frac{2}{3}$
当B≠∅时,则$\left\{\begin{array}{l}{-m+1≤2m-1}\\{-m+1≥-2}\\{2m-1≤4}\end{array}\right.$,
解得$\frac{2}{3}$≤m≤$\frac{5}{2}$,
综上所述m的取值范围为(-∞,$\frac{5}{2}$]

点评 本题主要考查了集合的包含关系判断及应用,以及集合关系中的参数取值问题,分类讨论思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.△ABC的内角A,B,C对应的三边分别是a,b,c,已知2(a2-b2)=2accosB+bc.
(Ⅰ)求角A;
(Ⅱ)若点D为BC上一点,且BD=2DC,BA⊥AD,求角B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,已知($\sqrt{3}$sinB-cosB)($\sqrt{3}$sinC-cosC)=4cosBcosC,且AB+AC=4,则BC长度的取值范围为(  )
A.(0,2]B.[2,4)C.[2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.扶余市为“市中学生知识竞赛”进行选拔性测试,且规定:成绩大于或等于80分的有参赛资格,80分以下(不包括80分)的则被淘汰.若现有500人参加测试,学生成绩的频率分布直方图如图:
(1)求获得参赛资格的人数;
(2)根据频率分布直方图,估算这500名学生测试的平均成绩.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.给定下列函数:①f(x)=$\frac{1}{x}$   ②f(x)=-|x|③f(x)=-2x-1 ④f(x)=(x-1)2,满足“对任意x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”的条件是(  )
A.①②③B.②③④C.①②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和Sn=n2
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求$\frac{1}{\sqrt{{a}_{1}}+\sqrt{{a}_{2}}}$+$\frac{1}{\sqrt{{a}_{2}}+\sqrt{{a}_{3}}}$+…+$\frac{1}{\sqrt{{a}_{2016}}+\sqrt{{a}_{2017}}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=asinx+bx${\;}^{\frac{1}{3}}}$-1,(a,b∈R),若f(lg$\frac{1}{2017}$)=2016,则f(lg2017)=(  )
A.-2016B.2016C.2018D.-2018

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列{xn}的首项x1=3,通项xn=2np+nq,(n∈N,p,q为常数),且x1,x4,x5成等差数列,则p之值为(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知:cosα+sinα=$\frac{2}{3}$,则$\frac{\sqrt{2}sin(2α-\frac{π}{4})+1}{1+tanα}$的值为-$\frac{5}{9}$.

查看答案和解析>>

同步练习册答案