精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{\frac{1}{3}{x}^{2}-\frac{8}{3}x+5,x≥2}\end{array}\right.$,若函数y=f(x)-m(m∈R)有四个零点x1,x2,x3,x4,则x1x2x3x4的取值范围是(  )
A.(7,12)B.(12,15)C.(12,16)D.(15,16)

分析 作函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{\frac{1}{3}{x}^{2}-\frac{8}{3}x+5,x≥2}\end{array}\right.$的图象,从而可得x1x2=1,且x3+x4=8,(2<x3<3),从而解得

解答 解:作函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{\frac{1}{3}{x}^{2}-\frac{8}{3}x+5,x≥2}\end{array}\right.$的图象如下,

结合图象可知,-log2x1=log2x2
故x1x2=1,
令$\frac{1}{3}{x}^{2}-\frac{8}{3}x+5$=0得,x=3,或x=5,
故x3+x4=8,(2<x3<3),
故x1x2x3x4=x3x4
=x3(8-x3
=-(x3-4)2+16,
∵2<x3<3,
∴-2<x3-4<-1,
∴12<-(x3-4)2+16<15,
故选:B

点评 本题考查了数形结合的思想应用及学生的作图能力,同时考查了配方法的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.在正项等差数列{an}中,a12=2a5-a9,且a5+a6+a7=18,则(  )
A.a1,a2,a3成等比数列B.a2,a3,a6成等比数列
C.a3,a4,a8成等比数列D.a4,a6,a9成等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{x^2},x<3\\{2^x},x≥3\end{array}$,则f(f(2))=(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知P是△ABC所在平面内一点,$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow 0$,现将一粒红豆随机撒在△ABC内,则红豆落在△PBC内的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.“三个数a,b,c成等比数列”是“b2=ac”的充分不必要条件.(填“充分不必要、充要、必要不充分、既不充分也不必要”)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.用0,1,2,3,4,5这6个数字可以组成多少个没有重复的4位数?其中有多少个是2的倍数?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知$\overrightarrow{a}$⊥$\overrightarrow{b}$,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$+2$\overrightarrow{b}$与λ$\overrightarrow{a}$-$\overrightarrow{b}$垂直,则实数λ的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知P是半径为2的球面上一点,过P点作两两垂直的三条线段PA,PB,PC,A,B,C三点均在球面上,满足PA=2PB,则P点到平面ABC的最远距离是(  )
A.$\frac{4\sqrt{6}}{9}$B.$\frac{4}{3}$C.$\frac{8}{7}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设数列{an}满足a1=1,a2=4,a3=9,an=an-1+an-2-an-3,n=4,5,…,则a2017=(  )
A.8064B.8065C.8067D.8068

查看答案和解析>>

同步练习册答案