精英家教网 > 高中数学 > 题目详情
13.已知P是△ABC所在平面内一点,$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow 0$,现将一粒红豆随机撒在△ABC内,则红豆落在△PBC内的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

分析 根据P是△ABC所在平面内一点,$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow 0$,得点P是△ABC的重心.再根据几何概型公式,将△PBC的面积与△ABC的面积相除可得本题的答案.

解答 解:∵P是△ABC所在平面内一点,$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow 0$,
∴P是△ABC的重心,
∴点P到BC的距离等于A到BC的距离的$\frac{1}{3}$.
∴S△PBC=$\frac{1}{3}$S△ABC
将一粒黄豆随机撒在△ABC内,黄豆落在△PBC内的概率为P=$\frac{1}{3}$.
故选B.

点评 本题考查的知识点是几何概型概率计算公式,计算出满足条件和所有基本事件对应的几何量,是解答的关键,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2+2x-3,g(x)=$\frac{klnx}{x}$,且函数f(x)与g(x)的图象在x=1处的切线相同.
(1)求k的值;
(2)令F(x)=$\left\{\begin{array}{l}{|f(x)|(x≤1)}\\{g(x)(x>1)}\end{array}\right.$,若函数y=F(x)-m存在3个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知四棱锥P-ABCD的底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,直线PB和平面ABCD所成的角为45°,E为PC的中点.
(I)求证:PA∥平面BED
( II)求二面角C-BE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相同的单位长度,已知直线l的参数方程是$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=3+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),曲线C的极坐标方程是ρcos2θ=2sinθ.
(1)写出直线l的普通方程和曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,点M为AB的中点,点P的极坐标为$(\sqrt{2},\frac{π}{4})$,求|PM|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线y=kx+3被圆(x-2)2+(y-3)2=4截得的弦长为$2\sqrt{3}$,则直线的斜率为(  )
A.$\sqrt{3}$B.$±\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$±\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=|x|,则下列与函数y=f(x)相等的函数是(2)(4);
(1)g(x)=($\sqrt{x}$)2;(2)h(x)=$\sqrt{{x}^{2}}$;(3)s(x)=x;(4)y=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{\frac{1}{3}{x}^{2}-\frac{8}{3}x+5,x≥2}\end{array}\right.$,若函数y=f(x)-m(m∈R)有四个零点x1,x2,x3,x4,则x1x2x3x4的取值范围是(  )
A.(7,12)B.(12,15)C.(12,16)D.(15,16)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数在(0,+∞)上是增函数的是(  )?
A.y=ln(x-2)B.y=-$\sqrt{x}$C.y=x2D.y=$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线x2=4y,圆C:x2+(y-2)2=4,点M(x0,y0),(x0>0,y0>4)为抛物线上的动点,过点M的圆C的两切线,设其斜率分别为k1,k2
(Ⅰ)求证:k1+k2=$\frac{2{x}_{0}({y}_{0}-2)}{{{x}_{0}}^{2}-4}$,k1•k2=$\frac{{{y}_{0}}^{2}-4{y}_{0}}{{{x}_{0}}^{2}-4}$.
(Ⅱ)求过点M的圆的两切线与x轴围成的三角形面积S的最小值.

查看答案和解析>>

同步练习册答案