14£®ÒÑÖªÅ×ÎïÏßx2=4y£¬Ô²C£ºx2+£¨y-2£©2=4£¬µãM£¨x0£¬y0£©£¬£¨x0£¾0£¬y0£¾4£©ÎªÅ×ÎïÏßÉϵ͝µã£¬¹ýµãMµÄÔ²CµÄÁ½ÇÐÏߣ¬ÉèÆäбÂÊ·Ö±ðΪk1£¬k2
£¨¢ñ£©ÇóÖ¤£ºk1+k2=$\frac{2{x}_{0}£¨{y}_{0}-2£©}{{{x}_{0}}^{2}-4}$£¬k1•k2=$\frac{{{y}_{0}}^{2}-4{y}_{0}}{{{x}_{0}}^{2}-4}$£®
£¨¢ò£©Çó¹ýµãMµÄÔ²µÄÁ½ÇÐÏßÓëxÖáΧ³ÉµÄÈý½ÇÐÎÃæ»ýSµÄ×îСֵ£®

·ÖÎö £¨I£©ÉèÇÐÏߣºy-y0=k£¨x-x0£©£¬ÇÐÏßÓëxÖá½»Óڵ㣨${x}_{0}-\frac{{y}_{0}}{k}$£¬0£©£¬Ô²Ðĵ½ÇÐÏߵľàÀëd=$\frac{|-2+{y}_{0}-{kx}_{0}|}{\sqrt{{k}^{2}+1}}$=2£¬½áºÏΤ´ï¶¨Àí£¬¿ÉµÃk1+k2=$\frac{2{x}_{0}£¨{y}_{0}-2£©}{{{x}_{0}}^{2}-4}$£¬k1•k2=$\frac{{{y}_{0}}^{2}-4{y}_{0}}{{{x}_{0}}^{2}-4}$£®
£¨¢ò£©Çó³ö¹ýµãMµÄÔ²µÄÁ½ÇÐÏßÓëxÖáΧ³ÉµÄÈý½ÇÐÎÃæ»ýSµÄ±í´ïʽ£¬ÓÉ»ù±¾²»µÈʽ¿ÉÇó³öÁ½ÇÐÏßÓëxÖáΧ³ÉµÄÈý½ÇÐÎÃæ»ýSµÄ×îСֵ£®

½â´ð ½â£º£¨I£©Ö¤Ã÷£ºÉèÇÐÏß·½³Ìy-y0=k£¨x-x0£©£¬¼´kx-y+y0-kx0=0£¬
ÇÐÏßÓëxÖύΪ£¨${x}_{0}-\frac{{y}_{0}}{k}$£¬0£©£¬Ô²Ðĵ½Ö±ÏߵľàÀëd=$\frac{|-2+{y}_{0}-{kx}_{0}|}{\sqrt{{k}^{2}+1}}$=2      £¨3·Ö£©
ÕûÀíµÃ£º${{£¨x}_{0}}^{2}-4£©{k}^{2}+2{x}_{0}£¨2-{y}_{0}£©k+{y}_{0}^{2}-4{y}_{0}=0$      £¨5·Ö£©
ÓÉÁ½ÇÐÏßµÄбÂÊ·Ö±ðΪk1£¬k2
Ôòk1+k2=$\frac{2{x}_{0}£¨{y}_{0}-2£©}{{{x}_{0}}^{2}-4}$£¬k1•k2=$\frac{{{y}_{0}}^{2}-4{y}_{0}}{{{x}_{0}}^{2}-4}$£¬¡­£¨7·Ö£©
£¨¢ò£©S=$\frac{1}{2}$|£¨${x}_{0}-\frac{{y}_{0}}{{k}_{1}}$£©-£¨${x}_{0}-\frac{{y}_{0}}{{k}_{2}}$£©|y0
=$\frac{1}{2}$y02•$\left|\frac{{k}_{1}-{k}_{2}}{{k}_{1}{k}_{2}}\right|$
=$\frac{1}{2}$y02•$\sqrt{\frac{£¨{k}_{1}+{k}_{2}£©^{2}-4{k}_{1}{k}_{2}}{{£¨k}_{1}{k}_{2}£©^{2}}}$
=$\frac{1}{2}$y02•$\sqrt{\frac{{£¨\frac{2{x}_{0}£¨{y}_{0}-2£©}{{{x}_{0}}^{2}-4}£©}^{2}-4•\frac{{{y}_{0}}^{2}-4{y}_{0}}{{{x}_{0}}^{2}-4}}{{£¨\frac{{{y}_{0}}^{2}-4{y}_{0}}{{{x}_{0}}^{2}-4}£©}^{2}}}$
=$\frac{2{y}_{0}^{\;}\sqrt{{x}_{0}^{2}+{y}_{0}^{2}-4{y}_{0}}}{{y}_{0}-4}$
=$\frac{2{y}_{0}^{2}}{{y}_{0}-4}$
=2[$\frac{16}{{y}_{0}-4}$+£¨y0-4£©+8]
¡Ý2£¨2$\sqrt{\frac{16}{{y}_{0}-4}•£¨{y}_{0}-4£©}$+8£©
=32 ¡­£¨12·Ö£©£®
µ±ÇÒ½öµ±$\frac{16}{{y}_{0}-4}$=y0-4£¬¼´y0=8ʱȡµÈºÅ£®
¹ÊÁ½ÇÐÏßÓëxÖáΧ³ÉµÄÈý½ÇÐÎÃæ»ýSµÄ×îСֵΪ32 ¡­£¨14·Ö£©

µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÅ×ÎïÏßµÄ×ÛºÏÔËÓ㬾ßÌåÉæ¼°µ½Å×ÎïÏߵĻù±¾ÐÔÖʼ°Ó¦Óã¬Ö±ÏßÓëÅ×ÎïÏßµÄλÖùØÏµ¡¢Ô²µÄ¼òµ¥ÐÔÖʵȻù´¡ÖªÊ¶£¬¹ì¼£·½³ÌµÄÇ󷨺͵㵽ֱÏߵľàÀ빫ʽµÄÔËÓã¬Ò×´íµãÊǾùÖµ¶¨ÀíµÄÓ¦Ó㮽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªPÊÇ¡÷ABCËùÔÚÆ½ÃæÄÚÒ»µã£¬$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow 0$£¬ÏÖ½«Ò»Á£ºì¶¹Ëæ»úÈöÔÚ¡÷ABCÄÚ£¬Ôòºì¶¹ÂäÔÚ¡÷PBCÄڵĸÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{1}{3}$C£®$\frac{1}{4}$D£®$\frac{2}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªPÊǰ뾶Ϊ2µÄÇòÃæÉÏÒ»µã£¬¹ýPµã×÷Á½Á½´¹Ö±µÄÈýÌõÏß¶ÎPA£¬PB£¬PC£¬A£¬B£¬CÈýµã¾ùÔÚÇòÃæÉÏ£¬Âú×ãPA=2PB£¬ÔòPµãµ½Æ½ÃæABCµÄ×îÔ¶¾àÀëÊÇ£¨¡¡¡¡£©
A£®$\frac{4\sqrt{6}}{9}$B£®$\frac{4}{3}$C£®$\frac{8}{7}$D£®$\frac{6}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®¹æ¶¨A${\;}_{x}^{m}$=x£¨x-1£©¡­£¨x-m+1£©£¬ÆäÖÐx¡ÊR£¬mΪÕýÕûÊý£¬ÇÒA${\;}_{x}^{0}$=1£¬ÕâÊÇÅÅÁÐÊýA${\;}_{n}^{m}$£¨n£¬mÊÇÕýÕûÊý£¬n¡Üm£©µÄÒ»ÖÖÍÆ¹ã£®
£¨¢ñ£© ÇóA${\;}_{-9}^{3}$µÄÖµ£»
£¨¢ò£©ÅÅÁÐÊýµÄÁ½¸öÐÔÖÊ£º¢ÙA${\;}_{n}^{m}$=nA${\;}_{n-1}^{m-1}$£¬¢ÚA${\;}_{n}^{m}$+mA${\;}_{n}^{m-1}$=A${\;}_{n+1}^{m}$£¨ÆäÖÐm£¬nÊÇÕýÕûÊý£©£®ÊÇ·ñ¶¼ÄÜÍÆ¹ãµ½A${\;}_{x}^{m}$£¨x¡ÊR£¬mÊÇÕýÕûÊý£©µÄÇéÐΣ¿ÈôÄÜÍÆ¹ã£¬Ð´³öÍÆ¹ãµÄÐÎʽ²¢¸øÓèÖ¤Ã÷£»Èô²»ÄÜ£¬Ôò˵Ã÷ÀíÓÉ£»
£¨¢ó£©ÒÑÖªº¯Êýf£¨x£©=aA${\;}_{x}^{2}$+xlnx+ax£¬Èôf£¨x£©ÓÐÁ½¸ö¼«Öµµãx1£¬x2£¨x1£¼x2£©£¬ÇóÖ¤£ºf£¨x2£©£¾f£¨x1£©£¾-$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬¹ýÓÒ½¹µãFÇÒбÂÊΪk£¨k£¾0£©µÄÖ±ÏßÓëÍÖÔ²CÏཻÓÚA£¬BÁ½µã£¬Èô$\overrightarrow{AF}=3\overrightarrow{FB}$£¬Ôòk=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªf£¨x£©=asin2x-$\frac{1}{3}$sin3x£¨aΪ³£Êý£©£¬ÔÚx=$\frac{¦Ð}{3}$´¦È¡µÃ¼«Öµ£¬Ôòa=£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®1C£®$\frac{2}{3}$D£®$-\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÉèÊýÁÐ{an}Âú×ãa1=1£¬a2=4£¬a3=9£¬an=an-1+an-2-an-3£¬n=4£¬5£¬¡­£¬Ôòa2017=£¨¡¡¡¡£©
A£®8064B£®8065C£®8067D£®8068

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®f£¨x£©=$\frac{1}{2}{x^2}$-ax+£¨a-1£©lnx£¬
£¨1£©µ±a=3ʱ£¬Çóf£¨x£©µÄ¼«Öµµã£»
£¨2£©µ±a£¼1ʱ£¬Çóf£¨x£©µÄµ¥µ÷Çø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖÐÄÚ¶¯µãP£¨x£¬y£©µ½Ô²F£ºx2+£¨y-1£©2=1µÄÔ²ÐÄFµÄ¾àÀë±ÈËüµ½Ö±Ïßy=-2µÄ¾àÀëС1£®
£¨1£©Ç󶯵ãPµÄ¹ì¼£·½³Ì£»
£¨2£©ÉèµãPµÄ¹ì¼£ÎªÇúÏßE£¬¹ýµãFµÄÖ±ÏßlµÄбÂÊΪk£¬Ö±Ïßl½»ÇúÏßEÓÚA£¬BÁ½µã£¬½»Ô²FÓÚC£¬DÁ½µã£¨A£¬CÁ½µãÏàÁÚ£©£®
¢ÙÈô$\overrightarrow{BF}$=t$\overrightarrow{FA}$£¬µ±t¡Ê[1£¬2]ʱ£¬ÇókµÄȡֵ·¶Î§£»
¢Ú¹ýA£¬BÁ½µã·Ö±ð×÷ÇúÏßEµÄÇÐÏßl1£¬l2£¬Á½ÇÐÏß½»ÓÚµãN£¬Çó¡÷ACNÓë¡÷BDNÃæ»ýÖ®»ýµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸