精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=x2+2x-3,g(x)=$\frac{klnx}{x}$,且函数f(x)与g(x)的图象在x=1处的切线相同.
(1)求k的值;
(2)令F(x)=$\left\{\begin{array}{l}{|f(x)|(x≤1)}\\{g(x)(x>1)}\end{array}\right.$,若函数y=F(x)-m存在3个零点,求实数m的取值范围.

分析 (1)求出函数f(x)的导数f′(x)=2x+2,求出切线方程,利用函数f(x)与g(x)的图象在x=1处的切线相同,列出关系式求解即可.
(2)化简F(x)=$\left\{\begin{array}{l}{|f(x)|(x≤1)}\\{g(x)(x>1)}\end{array}\right.$=$\left\{\begin{array}{l}{|{x}^{2}+2x-3|,x≤1}\\{\frac{4lnx}{x},x>1}\end{array}\right.$,通过当x>1时,函数的图形的变化情况,求出函数的极值,画出函数的图象,然后求解m的取值范围.

解答 (本小题满分12分)
解:(1)已知函数f(x)=x2+2x-3,
函数f′(x)=2x+2,则f′(1)=4,又f(1)=0,所以f(x)在x=1处的切线方程为y=4x-4,
又因为函数f(x)与g(x)的图象在x=1处的切线相同,g′(x)=$\frac{k(1-lnx)}{{x}^{2}}$,
所以g′(1)=k=4.(4分)
(2)令F(x)=$\left\{\begin{array}{l}{|f(x)|(x≤1)}\\{g(x)(x>1)}\end{array}\right.$=$\left\{\begin{array}{l}{|{x}^{2}+2x-3|,x≤1}\\{\frac{4lnx}{x},x>1}\end{array}\right.$,
当x>1时,F(x)=$\frac{4lnx}{x}$,F′(x)=$\frac{4-4lnx}{{x}^{2}}$,可得函数F(x)在x=e处的极大值为:$\frac{4}{e}$,
当x→+∞时,图象趋近于x轴.
函数F(x)的大致图象如图所示,
可知函数y=F(x)-m存在3个零点时,
m的取值范围是($\frac{4}{e}$,4).(12分)

点评 本小题主要考查函数与导数的知识,具体涉及到导数的运算,用导数来研究函数的单调性等,以及函数图象的判定,考查学生解决问题的综合能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|x-2|+2|x+1|.
(1)解不等式f(x)>4;
(2)若关于x的不等式f(x)≥m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.随机调查高河镇某社区80个人,以研究这一社区居民在20:00--22:00时间段的休闲方式与性别的关系,得到下面的数据表:
休闲方式
性别
看电视看书合计
105060
101020
合计206080
(1)从这80人中按照性别进行分层抽样,抽出4人,则男女应各抽取多少人;
(2)从第(1)问抽取的4位居民中随机抽取2位,恰有1男1女的概率是多少;
(3)由以上数据,能否有99%的把握认为在20:00-22:00时间段的休闲方式与性别有关系.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,A=60°,且$\frac{c}{b}$=$\frac{4}{3}$,则sinC=$\frac{2\sqrt{39}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x(x≥0)}\\{2x{-x}^{2}(x<0)}\end{array}\right.$,函数g(x)=|f(x)|-1,若g(2-a2)>g(a),则实数a的取值范围是(  )
A.(-2,1)B.(-∞,-2)U(2,+∞)C.(-2,2)D.(-∞,-2)U(-1,1)U(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在三棱锥的六条棱中任意选择两条,则这两条棱有公共点的概率为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在正项等差数列{an}中,a12=2a5-a9,且a5+a6+a7=18,则(  )
A.a1,a2,a3成等比数列B.a2,a3,a6成等比数列
C.a3,a4,a8成等比数列D.a4,a6,a9成等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某学校为了解高三年级学生寒假期间的学习情况,抽取甲、乙两班,调查这两个班的学生在寒假期间每天平均学习的时间(单位:小时),统计结果绘成频率分别直方图(如图).已知甲、乙两班学生人数相同,甲班学生每天平均学习时间在区间[2,4]的有8人.

(Ⅰ)求直方图中a的值及甲班学生每天平均学习时间在区间[10,12]的人数;
(Ⅱ)从甲、乙两个班每天平均学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知P是△ABC所在平面内一点,$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow 0$,现将一粒红豆随机撒在△ABC内,则红豆落在△PBC内的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案