精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=|x-2|+2|x+1|.
(1)解不等式f(x)>4;
(2)若关于x的不等式f(x)≥m恒成立,求实数m的取值范围.

分析 (1)通过讨论x的范围,去掉绝对值,从而解出不等式的解集;
(2)画出函数f(x)的图象,通过图象读出即可.

解答 解:(1)当x<-1时,-3x>4,解得x<-$\frac{4}{3}$,∴x<-$\frac{4}{3}$,
当-1≤x<2时,x+4>4,解得x>0,∴0<x<2,
当x≥2时,3x>4,解得x>$\frac{4}{3}$,∴x≥2,
综上,原不等式解集为{x|x<-$\frac{4}{3}$或x>0}.      
(2)由f(x)的图象和单调性易得f(x)min=f(-1)=3,
若?x∈R,f(x)≥m恒成立,
则只需f(x)min≥m⇒m≤3,
故实数m的取值范围是(-∞,3].

点评 本题考查了绝对值不等式的解法,考查函数恒成立问题,考查数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图所示,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD=a,PA=PC=$\sqrt{2}$a,
(1)求证:PD⊥平面ABCD;
(2)求证:平面PAC⊥平面PBD;
(3)若E是PC的中点,求二面角E-BD-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f(x)=ax3,g(x)=9x2+3x-1,当x∈[1,2]时,f(x)≥g(x)恒成立,则a的取值范围是(  )
A.a≤$\frac{41}{8}$B.a≤11C.a≥$\frac{41}{8}$D.a≥11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若关于x的函数f(x)=$\frac{t{x}^{2}+2x+{t}^{2}+sinx}{{x}^{2}+t}$(t>0)的最大值为M,最小值为N,且M+N=6,则实数t的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设F1、F2分别为椭圆Γ:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右两个焦点,若椭圆上一点M(1,$\frac{3}{2}$)到两个焦点的距离之和等于4.又已知点A是椭圆的右顶点,直线l交椭圆Γ于E、F两点(E、F与A点不重合),且满足AE⊥AF.
(Ⅰ) 求椭圆的标准方程;
(Ⅱ) O为坐标原点,若点P满足2$\overrightarrow{OP}$=$\overrightarrow{OE}$+$\overrightarrow{OF}$,求直线AP的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知AB是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴,若把该长轴2010等分,过每个等分点作AB的垂线,依次交椭圆的上半部分于点P1,P2,…,P2009,设左焦点为F1,则$\frac{1}{2010}$(|F1A|+|F1P1|+|F1P2|+…+|F1P2009|+|F1B|)=$\frac{2011}{2010}a$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数y=f(x)(x∈R)的图象如图所示,则不等式(x-1)f′(x)<0的解集为(  )
A.(-∞,0)∪($\frac{1}{2}$,1)B.(-∞,0)∪(1,2)C.(-∞,$\frac{1}{2}$)∪(1,2)D.(-∞,$\frac{1}{2}$)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知P为抛物线y2=6x上一点,点P到直线l:3x-4y+26=0的距离为d1
(1)求d1的最小值,并求此时点P的坐标;
(2)若点P到抛物线的距离为d2,求d1+d2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2+2x-3,g(x)=$\frac{klnx}{x}$,且函数f(x)与g(x)的图象在x=1处的切线相同.
(1)求k的值;
(2)令F(x)=$\left\{\begin{array}{l}{|f(x)|(x≤1)}\\{g(x)(x>1)}\end{array}\right.$,若函数y=F(x)-m存在3个零点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案