精英家教网 > 高中数学 > 题目详情
8.设F1、F2分别为椭圆Γ:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右两个焦点,若椭圆上一点M(1,$\frac{3}{2}$)到两个焦点的距离之和等于4.又已知点A是椭圆的右顶点,直线l交椭圆Γ于E、F两点(E、F与A点不重合),且满足AE⊥AF.
(Ⅰ) 求椭圆的标准方程;
(Ⅱ) O为坐标原点,若点P满足2$\overrightarrow{OP}$=$\overrightarrow{OE}$+$\overrightarrow{OF}$,求直线AP的斜率的取值范围.

分析 (Ⅰ)由题意可得a=2,c=1,由a,b,c的关系可得b,进而得到椭圆方程;
(Ⅱ)设直线AE的方程为y=k(x-2),代入椭圆方程,运用韦达定理,可得E的坐标,由两直线垂直可得F的坐标,再由直线的斜率公式,结合基本不等式即可得到斜率的最值,进而得到所求范围.

解答 解:(Ⅰ)依题意,可得2a=4,即a=2,又点$M(1,\frac{3}{2})$在椭圆上,
将点M(1,$\frac{3}{2}$)代入椭圆方程可知$\frac{1}{4}+\frac{{\frac{9}{4}}}{b^2}=1$,
解得:b2=3,
∴椭圆Γ的标准方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$;…(3分)
(Ⅱ) 由(Ⅰ)知A(2,0),设直线AE的方程为y=k(x-2),
$\left\{\begin{array}{l}{y=k(x-2)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,整理得:(3+4k2)x2-16k2x+16k2-12=0,
由韦达定理可知:2+xE=$\frac{16{k}^{2}}{3+4{k}^{2}}$,可得xE=$\frac{8{k}^{2}-6}{3+4{k}^{2}}$,
yE=k(xE-2)=$\frac{-12k}{3+4{k}^{2}}$,
由于AE⊥AF,只要将上式的k换为-$\frac{1}{k}$,
可得xF=$\frac{8-6{k}^{2}}{3+4{k}^{2}}$,yF=$\frac{12k}{4+3{k}^{2}}$,
由2$\overrightarrow{OP}$=$\overrightarrow{OE}$+$\overrightarrow{OF}$,可得P为EF的中点,
即有P($\frac{14{k}^{2}}{(4+3{k}^{2})(3+4{k}^{2})}$,$\frac{6k({k}^{2}-1)}{(4+3{k}^{2})(3+4{k}^{2})}$),
则直线AP的斜率为t=$\frac{{y}_{P}}{{x}_{P}-2}$=$\frac{k(1-{k}^{2})}{4{k}^{4}+4+6{k}^{2}}$,
当k=0时,t=0;
当k≠0时,t=$\frac{\frac{1}{k}-k}{4({k}^{2}+\frac{1}{{k}^{2}})+6}$,
再令s=$\frac{1}{k}-k$,可得t=$\frac{s}{4{s}^{2}+14}$,
当s=0时,t=0;当s>0时,t=$\frac{1}{4s+\frac{14}{s}}$≤$\frac{1}{2\sqrt{56}}$=$\frac{\sqrt{14}}{56}$,
当且仅当4s=$\frac{14}{s}$时,取得最大值;
当s<0时,t=$\frac{1}{4s+\frac{14}{s}}$≥-$\frac{\sqrt{14}}{56}$,
综上可得:直线AP的斜率的取值范围是[-$\frac{\sqrt{14}}{56}$,$\frac{\sqrt{14}}{56}$].

点评 本题考查椭圆的方程的求法,考查直线和椭圆方程联立,运用韦达定理,考查直线的斜率的取值范围的求法,注意运用基本不等式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{1}{x}$+alnx(a≠0,a∈R).
(1)若a=1,求函数f(x)的极值和单调区间;
(2)若在区间(0,e]上至少存在一点x0,使得f(x0)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=kax-a-x(a>0且a≠1,k∈R),f(x)是定义域为R的奇函数.
(1)求k的值.
(2)判断并证明当a>1时,函数f(x)在R上的单调性;
(3)已知a=3,若f(3x)≥λ•f(x)对于x∈[1,2]时恒成立.请求出最大的整数λ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.圆C1和直线C2的极坐标方程分别为ρ=4sinθ,ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.
(1)求圆C1和直线C2的直角坐标方程.
(2)求圆C1和直线C2交点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上一点A关于原点的对称点为点B,F为其右焦点,若AF⊥BF,设∠ABF=α,且α∈[$\frac{π}{6}$,$\frac{π}{4}$],则该椭圆离心率e的取值范围为$[\frac{{\sqrt{2}}}{2},\sqrt{3}-1]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|x-2|+2|x+1|.
(1)解不等式f(x)>4;
(2)若关于x的不等式f(x)≥m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow m$=($\sqrt{3}sin\frac{x}{4}$,1),$\overrightarrow n$=(cos$\frac{x}{4}$,${cos^2}\frac{x}{4}$),记f(x)=$\overrightarrow m•\overrightarrow n$.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)将函数y=f(x)的图象向右平移$\frac{2π}{3}$个单位得到y=g(x)的图象,讨论函数y=g(x)-k在$[0,\frac{7π}{3}]$的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知抛物线C的顶点在坐标原点O,其图象关于y轴对称且经过点M(2,1).
(1)求抛物线C的方程;
(2)若一个等边三角形的一个顶点位于坐标原点,另两个顶点在抛物线上,求该等边三角形的面积;
(3)过点M作抛物线C的两条弦MA,MB,设MA,MB所在直线的斜率分别为k1,k2,当k1k2=-2时,试证明直线AB恒过定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x(x≥0)}\\{2x{-x}^{2}(x<0)}\end{array}\right.$,函数g(x)=|f(x)|-1,若g(2-a2)>g(a),则实数a的取值范围是(  )
A.(-2,1)B.(-∞,-2)U(2,+∞)C.(-2,2)D.(-∞,-2)U(-1,1)U(2,+∞)

查看答案和解析>>

同步练习册答案