精英家教网 > 高中数学 > 题目详情
5.已知函数y=f(x)(x∈R)的图象如图所示,则不等式(x-1)f′(x)<0的解集为(  )
A.(-∞,0)∪($\frac{1}{2}$,1)B.(-∞,0)∪(1,2)C.(-∞,$\frac{1}{2}$)∪(1,2)D.(-∞,$\frac{1}{2}$)∪(1,+∞)

分析 根据条件判断函数的单调性,利用数形结合即可解不等式.

解答 解:∵(x-1)•f′(x)<0,
∴不等式等价为x>1时,f′(x)<0,此时函数单调递减,由图象可知此时解集为:(1,2).
当x<1时,f′(x)>0,此时函数单调递增,由图象可知x<$\frac{1}{2}$,
即不等式的解集为(-∞,$\frac{1}{2}$)∪(1,2).
故选:C.

点评 本题主要考查不等式的求解,根据函数单调性,导数和函数图象之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知点A(4,8)是抛物线C:y2=2px与直线l:y=k(x+4)的一个交点,则抛物线的焦点到直线l的距离是(  )
A.$\sqrt{2}$B.$2\sqrt{2}$C.$3\sqrt{2}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.圆C1和直线C2的极坐标方程分别为ρ=4sinθ,ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.
(1)求圆C1和直线C2的直角坐标方程.
(2)求圆C1和直线C2交点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|x-2|+2|x+1|.
(1)解不等式f(x)>4;
(2)若关于x的不等式f(x)≥m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow m$=($\sqrt{3}sin\frac{x}{4}$,1),$\overrightarrow n$=(cos$\frac{x}{4}$,${cos^2}\frac{x}{4}$),记f(x)=$\overrightarrow m•\overrightarrow n$.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)将函数y=f(x)的图象向右平移$\frac{2π}{3}$个单位得到y=g(x)的图象,讨论函数y=g(x)-k在$[0,\frac{7π}{3}]$的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{lnx}{1-x}$,ϕ(x)=(x-1)2•f′(x)
(1)若函数ϕ(x)在区间(3m,m+$\frac{1}{2}$)上单调递减,求实数m的取值范围;
(2)若对任意的x∈(0,1),恒有(1+x)•f(x)+2a<0(a>0),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知抛物线C的顶点在坐标原点O,其图象关于y轴对称且经过点M(2,1).
(1)求抛物线C的方程;
(2)若一个等边三角形的一个顶点位于坐标原点,另两个顶点在抛物线上,求该等边三角形的面积;
(3)过点M作抛物线C的两条弦MA,MB,设MA,MB所在直线的斜率分别为k1,k2,当k1k2=-2时,试证明直线AB恒过定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.随机调查高河镇某社区80个人,以研究这一社区居民在20:00--22:00时间段的休闲方式与性别的关系,得到下面的数据表:
休闲方式
性别
看电视看书合计
105060
101020
合计206080
(1)从这80人中按照性别进行分层抽样,抽出4人,则男女应各抽取多少人;
(2)从第(1)问抽取的4位居民中随机抽取2位,恰有1男1女的概率是多少;
(3)由以上数据,能否有99%的把握认为在20:00-22:00时间段的休闲方式与性别有关系.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在正项等差数列{an}中,a12=2a5-a9,且a5+a6+a7=18,则(  )
A.a1,a2,a3成等比数列B.a2,a3,a6成等比数列
C.a3,a4,a8成等比数列D.a4,a6,a9成等比数列

查看答案和解析>>

同步练习册答案