精英家教网 > 高中数学 > 题目详情
3.如图所示,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD=a,PA=PC=$\sqrt{2}$a,
(1)求证:PD⊥平面ABCD;
(2)求证:平面PAC⊥平面PBD;
(3)若E是PC的中点,求二面角E-BD-C的正切值.

分析 (1)由勾股定理得:PD⊥DC,PD⊥AD,再由线面垂直的判定定理,可得PD⊥平面ABCD;
(2)由(1)知PD⊥平面ABCD,结合底面是边长为a的正方形,可得AC⊥平面PDB,再由面面垂直的判定定理,可得:平面PAC⊥平面PBD;
(3)过点E作EF⊥CD于F,过F作HF⊥BD于H,故∠FHE为二面角E-BD-C的平面角,解得:二面角E-BD-C的正切值.

解答 证明:(1)∵PD=a,DC=a,PC=$\sqrt{2}$a,
∴PC2=PD2+DC2
∴PD⊥DC.
同理可证PD⊥AD,又AD∩DC=D,
∴PD⊥平面ABCD.
(2)由(1)知PD⊥平面ABCD,
∴PD⊥AC,而四边形ABCD是正方形,
∴AC⊥BD,又BD∩PD=D,
∴AC⊥平面PDB.
同时,AC?平面PAC,
∴平面PAC⊥平面PBD.
(3)过点E作EF⊥CD于F,过F作HF⊥BD于H,

故∠FHE为二面角E-BD-C的平面角.
在Rt△EFH中,tan∠FHE=$\sqrt{2}$.

点评 本题考查的知识点是线面垂直的判定,面面垂直的判定,二面角的平面角及求解,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=2cos2x+$\sqrt{3}$sin2x.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)求函数f(x)的最小值及x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列说法正确的是(  )
A.函数y=|x|有极大值,但无极小值B.函数y=|x|有极小值,但无极大值
C.函数y=|x|既有极大值又有极小值D.函数y=|x|无极值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=xln x,g(x)=(-x2+ax-3)ex(a为实数).
(1)当a=5时,求函数y=g(x)在x=1处的切线方程;
(2)求f(x)在区间[t,t+2](t>0)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{1}{x}$+alnx(a≠0,a∈R).
(1)若a=1,求函数f(x)的极值和单调区间;
(2)若在区间(0,e]上至少存在一点x0,使得f(x0)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若一个正三棱锥的正(主)视图如图所示,则其体积等于(  )
A.$\frac{{\sqrt{3}}}{6}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{2\sqrt{3}}}{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知点A(4,8)是抛物线C:y2=2px与直线l:y=k(x+4)的一个交点,则抛物线的焦点到直线l的距离是(  )
A.$\sqrt{2}$B.$2\sqrt{2}$C.$3\sqrt{2}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知二次函数f(x)=ax2+bx+1和函数g(x)=$\frac{bx-1}{{a}^{2}x+2b}$,
(1)若f(x)为偶函数,试判断g(x)的奇偶性;
(2)若方程g(x)=x有两个不等的实根x1,x2(x2<x2),则
①试判断函数f(x)在区间(-1,1)上是否具有单调性,并说明理由;
②若方程f(x)=0的两实根为x3,x4(x3<x4)求使x1<x2<x3<x4成立的a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|x-2|+2|x+1|.
(1)解不等式f(x)>4;
(2)若关于x的不等式f(x)≥m恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案