精英家教网 > 高中数学 > 题目详情
14.下列说法正确的是(  )
A.函数y=|x|有极大值,但无极小值B.函数y=|x|有极小值,但无极大值
C.函数y=|x|既有极大值又有极小值D.函数y=|x|无极值

分析 根据函数y=|x|的图象,得出结论.

解答 解:根据函数y=|x|的图象,可得函数y有极小值,但无极大值,
故选:B.

点评 本题主要考查函数的图象,函数的极值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在数列{an}中,a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+1}$.(n∈N*
(1)求证:数列{$\frac{1}{{a}_{n}}$}是等差数列,并求数列{an}的通项公式;
(2)设bn=$\frac{1}{{2}^{n}•{a}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{2}$x2-alnx(a∈R).
(1)求f(x)的单调区间;
(2)当x>1时,证明:$\frac{2}{3}$x3>$\frac{1}{2}$x2+lnx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=λex-x2,g(x)=-x2+$\frac{μ}{2}$x-$\frac{15}{2}$(μ>0),其中e=2.71828…是然对数底数.
(Ⅰ)若函数f(x)有两个不同的极值点x1,x2,求实数λ的取值范围;
(Ⅱ)当λ=1时,求使不等式f(x)>g(x)在一切实数上恒成立的最大正整数μ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知t<0,设函数f(x)=x3+$\frac{3(t-1)}{2}{x^2}$-3tx.
(1)若f(x)在(0,2)上无极值,求t的值;
(2)若存在x0∈(0,2),使得f(x0)是f(x)在[0,2]上的最大值,求t的取值范围;
(3)若f(x)≤xex-m(e为自然对数的底数)对任意x∈[0,+∞)恒成立时m的最大值为0,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数$f(x)=\frac{1}{2}{x^2}-4lnx$
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在区间[1,e]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x3+ax2+c,当x=-1时,f(x)的极大值为7;当x=3时,f(x)有极小值.
(I)求a,b,c的值;
(Ⅱ)求f(x)在[-2,4]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD=a,PA=PC=$\sqrt{2}$a,
(1)求证:PD⊥平面ABCD;
(2)求证:平面PAC⊥平面PBD;
(3)若E是PC的中点,求二面角E-BD-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f(x)=ax3,g(x)=9x2+3x-1,当x∈[1,2]时,f(x)≥g(x)恒成立,则a的取值范围是(  )
A.a≤$\frac{41}{8}$B.a≤11C.a≥$\frac{41}{8}$D.a≥11

查看答案和解析>>

同步练习册答案