精英家教网 > 高中数学 > 题目详情
8.直线y=kx+3被圆(x-2)2+(y-3)2=4截得的弦长为$2\sqrt{3}$,则直线的斜率为(  )
A.$\sqrt{3}$B.$±\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$±\frac{{\sqrt{3}}}{3}$

分析 求出圆(x-2)2+(y-3)2=4的圆心,半径,圆心(2,3)到直线y=kx+3的距离,由此利用直线y=kx+3被圆(x-2)2+(y-3)2=4截得的弦长为2$\sqrt{3}$,由勾股定理能求出k.

解答 解:圆(x-2)2+(y-3)2=4的圆心(2,3),半径r=2,
圆心(2,3)到直线y=kx+3的距离d=$\frac{|2k|}{\sqrt{{k}^{2}+1}}$,
∵直线y=kx+3被圆(x-2)2+(y-3)2=4截得的弦长为2$\sqrt{3}$,
∴由勾股定理得4=($\frac{|2k|}{\sqrt{{k}^{2}+1}}$)2+3,
解得k=$±\frac{\sqrt{3}}{3}$.
故选:D.

点评 本题考查直线与圆相交时弦长问题,以及点到直线的距离公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x(x≥0)}\\{2x{-x}^{2}(x<0)}\end{array}\right.$,函数g(x)=|f(x)|-1,若g(2-a2)>g(a),则实数a的取值范围是(  )
A.(-2,1)B.(-∞,-2)U(2,+∞)C.(-2,2)D.(-∞,-2)U(-1,1)U(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,a,b,c为角A,B,C的对边,若$\frac{a}{cosA}=\frac{b}{cosB}=\frac{c}{sinC}$,则△ABC是(  )
A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{x^2},x<3\\{2^x},x≥3\end{array}$,则f(f(2))=(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.命题“?x∈R,x2-4<0或x2-4x>0”的否定为(  )
A.?x∈R,x2-4≥0或x2-4x≤0B.?x∈R,x2-4≥0且x2-4x≤0
C.?x∈R,x2-4≥0或x2-4x≤0D.?x∈R,x2-4≥0且x2-4x≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知P是△ABC所在平面内一点,$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow 0$,现将一粒红豆随机撒在△ABC内,则红豆落在△PBC内的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.“三个数a,b,c成等比数列”是“b2=ac”的充分不必要条件.(填“充分不必要、充要、必要不充分、既不充分也不必要”)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知$\overrightarrow{a}$⊥$\overrightarrow{b}$,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$+2$\overrightarrow{b}$与λ$\overrightarrow{a}$-$\overrightarrow{b}$垂直,则实数λ的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,过右焦点F且斜率为k(k>0)的直线与椭圆C相交于A,B两点,若$\overrightarrow{AF}=3\overrightarrow{FB}$,则k=1.

查看答案和解析>>

同步练习册答案