精英家教网 > 高中数学 > 题目详情

如图,在△ABC中,AD⊥AB,数学公式,则数学公式=________.


分析:以A为坐标原点,以AB为x轴,AD为y轴,建立平面直角坐标系,因为在△ABC中,AD⊥AB,,所以A(0,0),B(2a,0),C(-a,),D(0,1),由此能求出的值.
解答:解:以A为坐标原点,以AB为x轴,AD为y轴,建立平面直角坐标系,
∵在△ABC中,AD⊥AB,
∴A(0,0),B(2a,0),C(-a,),D(0,1),

=(-a,)•(0,1)=
故答案为:
点评:本题考查平面向量的几何中的应用,是中档题.解题时要认真审题,恰当地建立平面直角坐标系是正确解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,已知∠ABC=90°,AB上一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直径BE的长;
(2)计算:△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=
3
BD,BC=2BD,则sinC的值为(  )
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,设
AB
=a
AC
=b
,AP的中点为Q,BQ的中点为R,CR的中点恰为P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,求平行四边形ANPM和三角形ABC的面积之比
S平行四边形ANPM
S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3.
(1)求∠ADC的大小;
(2)求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,已知
BD
=2
DC
,则
AD
=(  )

查看答案和解析>>

同步练习册答案