精英家教网 > 高中数学 > 题目详情
(2012•莆田模拟)已知l,m为两条不同的直线,α为一个平面.若l∥m,则“l∥α”是“m∥α”的(  )
分析:本题由线面平行的判定定理可得,要想证明线面平行,必须注意定理的条件,强调面内外的线线平行才可以.
解答:解:l,m为两条不同的直线,α为一个平面,l∥m,若l∥α,不一定推得m∥α,
因为有可能m?α,故是不充分条件.同理,由m∥α,也不能推得l∥α,
故也是不必要条件,综上可知,l∥m是l∥α既不充分也不必要条件.
故答案选D.
点评:本题借充要条件考查线面平行的判定,注意定理要满足的条件,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•莆田模拟)若点(m,n)在直线4x+3y-10=0上,则m2+n2的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•莆田模拟)如图,F是抛物线E:y2=2px(p>0)的焦点,A是抛物线E上任意一点.现给出下列四个结论:
①以线段AF为直径的圆必与y轴相切;
②当点A为坐标原点时,|AF|为最短;
③若点B是抛物线E上异于点A的一点,则当直线AB过焦点F时,|AF|+|BF|取得最小值;
④点B、C是抛物线E上异于点A的不同两点,若|AF|、|BF|、|CF|成等差数列,则点A、B、C的横坐标亦成等差数列.
其中正确结论的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•莆田模拟)已知函数f(x)=lnx+x2-mx.
(1)若m=3,求函数f(x)的极小值;
(2)若函数f(x)在定义域内为增函数,求实数m的取值范围;
(3)若m=1,△ABC的三个顶点A(x1,y1),B(x2,y2),C(x3,y3)在函数f(x)的图象上,且x1<x2<x3,a、b、c分别为△ABC的内角A、B、C所对的边.求证:a2+c2<b2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•莆田模拟)若实数a,b,c使得函数f(x)=x3+ax2+bx+c的三个零点分别为椭圆、双曲线、抛物线的离心率e1,e2,e3,则a,b,c的一种可能取值依次为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•莆田模拟)由函数f(x)=ex-e的图象,直线x=2及x轴所围成的图象面积等于(  )

查看答案和解析>>

同步练习册答案