精英家教网 > 高中数学 > 题目详情
12.在区间[0,6]上随机地取一个数m,则事件“关于x的方程x2+2mx+m+2=0有实根”发生的概率为$\frac{2}{3}$.

分析 由题意知方程的判别式大于等于零求出m的范围,再判断出所求的事件符合几何概型,再由几何概型的概率公式求出所求事件的概率.

解答 解:若关于x的方程x2+2mx+m+2=0有实根,则△=(2m)2-4×(m+2)≥0,
即m2-m-2≥0,解得m≥2或m≤-1;
记事件A:设在区间[0,6]上随机地取一个数m,方程x2+2mx+m+2=0有实根符合几何概型,
∴P(A)=$\frac{6-2}{6-0}$=$\frac{2}{3}$.
故答案为:$\frac{2}{3}$.

点评 本题考查了求几何概型下的随机事件的概率,即求出所有实验结果构成区域的长度和所求事件构成区域的长度,再求比值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若平面区域$\left\{\begin{array}{l}{x+y-3≥0}\\{2x-y-3≤0}\\{x-2y+3≥0}\end{array}\right.$,夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是(  )
A.$\frac{3\sqrt{5}}{5}$B.$\sqrt{2}$C.$\frac{3\sqrt{2}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知四棱锥的底面是边长为2的正方形,其俯视图所示:则下列命题中正确的是(  )
A.四棱锥四个侧面中不存在两组侧面互相垂直
B.四棱锥的四个侧面可能全是直角三角形
C.若该四棱锥的左视图为直角三角形,则体积为$\frac{4}{3}$
D.若该四棱锥的正视图为等腰三角形,则四棱锥的侧面积为6+2$\sqrt{2}$+2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知cos(α-$\frac{2π}{9}$)=-$\frac{\sqrt{7}}{4}$,且α∈($\frac{π}{2}$,π),则sin(α+$\frac{7π}{9}$)等于(  )
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.$\frac{\sqrt{7}}{4}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{x^2}{{1+{x^2}}}$,
(1)求f(2)+f($\frac{1}{2}$),f(3)+f($\frac{1}{3}$)的值;
(2)归纳猜想一般性结论,并给出证明;
(3)求值:f(1)+f(2)+f(3)+…+f(2016)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2016}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某几何体的三视图如图所示,则该几何体的体积为(  )
A.B.$\frac{40π}{3}$C.$\frac{20π}{3}$D.$\frac{16π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设f(x)=$\frac{1+x}{1-x}$,又记f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N,则f2016(x)=(  )
A.$\frac{1+x}{1-x}$B.$\frac{x-1}{x+1}$C.xD.-$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图是函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的部分图象,若f(α)=$\frac{3}{5}$,则sinα的值是(  )
A.-$\frac{7}{25}$B.$\frac{7}{25}$C.-$\frac{24}{25}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)满足以下两个条件:
(1)当x≤0时,f(x)=x2+x;
(2)当x>0时,f(x)=f(x-1).
若不存在x0使得f(x0)-ax0+2<0,
则a的取值范围是(  )
A.[1+2$\sqrt{2}$,+∞)B.(-∞,1-2$\sqrt{2}$]C.[1-2$\sqrt{2}$,0]D.[-2,0]

查看答案和解析>>

同步练习册答案