精英家教网 > 高中数学 > 题目详情
20.已知cos(α-$\frac{2π}{9}$)=-$\frac{\sqrt{7}}{4}$,且α∈($\frac{π}{2}$,π),则sin(α+$\frac{7π}{9}$)等于(  )
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.$\frac{\sqrt{7}}{4}$D.-$\frac{1}{4}$

分析 由已知利用同角三角函数基本关系式可求sin(α-$\frac{2π}{9}$)的值,利用诱导公式化简所求即可计算得解.

解答 解:∵α∈($\frac{π}{2}$,π),
∴α-$\frac{2π}{9}$∈($\frac{5π}{18}$,$\frac{7π}{9}$),
∵cos(α-$\frac{2π}{9}$)=-$\frac{\sqrt{7}}{4}$,
∴sin(α-$\frac{2π}{9}$)=$\sqrt{1-co{s}^{2}(α-\frac{2π}{9})}$=$\frac{3}{4}$,
∴sin(α+$\frac{7π}{9}$)=sin[π+(α-$\frac{2π}{9}$)]=-sin(α-$\frac{2π}{9}$)=-$\frac{3}{4}$.
故选:A.

点评 本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)在定义域(0,+∞)上是单调函数,若对任意x∈(0,+∞),都有f(f(x)-x3)=2,且函数g(x)=$\frac{{x}^{2}lnx}{f(x)-1}$-a有且只有两个不同的零点,则实数a的取值范围是(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数y=f(x)满足f(4+x)=f(4-x),且当x≤4时,f(x)=$\frac{1}{4}$•2x
(1)求当x>4时,函数y=f(x)的解析式;
(2)若数列{an}的通项公式为an=f(n).求an的表达式.并求$\underset{lim}{n→∞}$an的值;
(3)若数列{an}的前n项和为Sn,求Sn的表达式.并求$\underset{lim}{n→∞}$Sn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线C:y=x2在x=1处的切线为l.
(1)求直线l的方程;
(2)求直线l与曲线C以及x轴所围成的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,设不等式组$\left\{\begin{array}{l}-1≤x≤1\\ 0≤y≤1\end{array}\right.$表示的平面区域为长方形ABCD,长方形ABCD内的曲线
为抛物线y=x2的一部分,若在长方形ABCD内随机取一个点,则此点取自阴影部分的概率等于(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,在半径为10的圆O中,∠AOB=90°,C为OB的中点,AC的延长线交圆O于点D,则线段CD的长为(  )
A.$\sqrt{5}$B.2$\sqrt{5}$C.3$\sqrt{5}$D.5$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在区间[0,6]上随机地取一个数m,则事件“关于x的方程x2+2mx+m+2=0有实根”发生的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=ex-2ax,x∈R.
(1)当a=1时,求证:f(x)>0;
(2)当a>$\frac{1}{2}$时,求函数f(x)在[0,2a]上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合A={x|-3<x<4},集合B={x|x<1},则A∪B等于(  )
A.(-3,1)B.[-4,1)C.(-∞,4)D.(1,4)

查看答案和解析>>

同步练习册答案