| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
分析 对于命题p:利用二次函数的单调性可得:-1≤a,¬p:a<-1.对于命题q:由于x>0,利用基本不等式的性质可得:$\frac{{x}^{2}+1}{x}$=x+$\frac{1}{x}$≥2,即可得出结论.
解答 解:p:函数f(x)=(x-a)2在(-∞,-1)上是减函数,∴-1≤a,∴¬p:a<-1.
q:∵x>0,∴$\frac{{x}^{2}+1}{x}$=x+$\frac{1}{x}$≥$2\sqrt{x•\frac{1}{x}}$=2,当且仅当x=1时取等号,∴a≤2.
则¬p是q的充分不必要条件.
故选:A.
点评 本题考查了不等式的解法、函数的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{AC}$-$\overrightarrow{AB}$ | B. | $\overrightarrow{BD}$=$\overrightarrow{AC}$-$\frac{1}{2}$$\overrightarrow{AB}$ | C. | $\overrightarrow{BD}$=$\frac{3}{2}$$\overrightarrow{AC}$-$\overrightarrow{AB}$ | D. | $\overrightarrow{BD}$=$\overrightarrow{AC}$-$\frac{3}{2}$$\overrightarrow{AB}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{10}$ | B. | $\frac{5}{8}$ | C. | $\frac{7}{10}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com