精英家教网 > 高中数学 > 题目详情
1.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O-ABC体积的最大值为$\frac{32}{3}$,则球O的表面积为64π.

分析 当点C位于垂直于面AOB的直径端点时,三棱锥O-ABC的体积最大,利用三棱锥O-ABC体积的最大值为$\frac{32}{3}$,求出半径,即可求出球O的表面积.

解答 解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O-ABC的体积最大,设球O的半径为R,此时VO-ABC=VC-AOB=$\frac{1}{3}×\frac{1}{2}×{R}^{2}×R$=$\frac{1}{6}{R}^{3}$=$\frac{32}{3}$,
故R=4,则球O的表面积为4πR2=64π,
故答案为:64π.

点评 本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O-ABC的体积最大是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.在边长为2的正方形AP1P2P3中,点B、C分别是边P1P2、P2P3的中点,沿AB、BC、CA翻折成一个三棱锥P-ABC,使P1、P2、P3重合于点P,则三棱锥P-ABC的外接球的表面积为(  )
A.B.C.12πD.24π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.为了解某班学生喜爱体育运动是否与性别相关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱体育运动不喜爱体育运动合计
男生5
女生10
合计50
已知在全部女生中随机调查2人,恰好调查到的2位女生都喜爱体育运动的概率为$\frac{3}{20}$
(1)请将上面的列联表补充完整(不用写计算过程)
(2)能偶在犯错误的概率不超过0.005的前提下认为喜爱体育运动与性别有关?说明你的理由;
下面的临界值表供参考:
P(K2≥k)0.100.050.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线l:mx+$\sqrt{2}$ny=2与圆O:x2+y2=1交于A、B两点,若△AOB为直角三角形,则点M(m,n)到点P(-2,0)、Q(2,0)的距离之和(  )
A.最大值为6$\sqrt{2}$B.最小值为3$\sqrt{2}$C.是一个常数4$\sqrt{3}$D.是一个常数4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16. 已知三棱柱ABC-A1B1C1中,A1A⊥底面ABC,∠BAC=90°,A1A=1,$AB=\sqrt{3}$,AC=2,E、F分别为棱C1C、BC的中点.
(Ⅰ)求证 AC⊥A1B;
(Ⅱ)求直线EF与A1B所成的角;
(Ⅲ)若G为线段A1A的中点,A1在平面EFG内的射影为H,求∠HA1A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知球O的半径为R,A,B,C三点在球O的球面上,球心O到平面ABC的距离为$\frac{1}{2}$R.AB=AC=2,∠BAC=120°,则球O的表面积为(  )
A.$\frac{16}{9}$πB.$\frac{16}{3}$πC.$\frac{64}{9}$πD.$\frac{64}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知边长为3的正△ABC三个顶点都在球O的表面上,且OA与平面ABC所成的角为30°,则球O的表面积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2$\sqrt{2}$,BC=4$\sqrt{2}$,PA=2,点M在线段PD上.
(I)求证:AB⊥PC;
(Ⅱ)若二面角M-AC-D的余弦值为$\frac{\sqrt{5}}{5}$,求BM与平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足an+1=$\frac{{(n+2)a_n^2-n{a_n}+n+1}}{a_n^2+1}$(n∈N+),且a1=1.
(1)求a2,a3,a4,猜测an,并用数学归纳法证明;
(2)若n≥4,试比较3an与(n-1)•2n+2n2的大小,并给出证明过程.

查看答案和解析>>

同步练习册答案