精英家教网 > 高中数学 > 题目详情
11.在边长为2的正方形AP1P2P3中,点B、C分别是边P1P2、P2P3的中点,沿AB、BC、CA翻折成一个三棱锥P-ABC,使P1、P2、P3重合于点P,则三棱锥P-ABC的外接球的表面积为(  )
A.B.C.12πD.24π

分析 根据题意,得折叠成的三棱锥P-ABC三条侧棱PA、PB、PC两两互相垂直,可得三棱锥P-ABC的外接球的直径等于以PA、PB、PC为长、宽、高的长方体的对角线长,由此结合AP=2、BP=CP=1算出外接球的半径R=$\frac{\sqrt{6}}{2}$,结合球的表面积公式即可算出三棱锥P-ABC的外接球的表面积.

解答 解:根据题意,得三棱锥P-ABC中,AP=2,BP=CP=1
∵PA、PB、PC两两互相垂直,
∴三棱锥P-ABC的外接球的直径2R=$\sqrt{A{P}^{2}+B{P}^{2}+C{P}^{2}}$=$\sqrt{6}$
可得三棱锥P-ABC的外接球的半径为R=$\frac{\sqrt{6}}{2}$
根据球的表面积公式,得三棱锥P-ABC的外接球的表面积为
S=4πR2=4π×($\frac{\sqrt{6}}{2}$)2=6π
故选:B.

点评 本题将正方形折叠成三棱锥,求三棱锥的外接球的表面积.着重考查了长方体的对角线长公式、三棱锥的外接球和球的表面积公式等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.排列组合问题(注:最后结果请用排列数或组合数表示)
(1)10个人走进只放有6把不同椅子的教室里,若要求每一把椅子能且只能坐1人,求总共有多少种不同的坐法?
(2)6个人走进放有10把不同椅子的教室里,若要求每一把椅子能且只能坐1人,求总共有多少种不同的坐法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如果△ABC的三边a,b,c满足a3+b3+a2b+ab2-ac2-bc2=0,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知△ABC满足$\sqrt{3}$(sin2B+sin2C-sin2A)=2sinBsinC.
(1)求tanA;
(2)若BC=2$\sqrt{2}$,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,在正四棱柱ABCD-A1B1C1D1中,AB=1,AA1=2,点P是平面A1B1C1D1内的一个动点,则三棱锥P-ABC的正视图与俯视图的面积之比的最大值为(  )
A.1B.2C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平面直角坐标系中,以(0,-1)为圆心且与直线ax+y+$\sqrt{2{a^2}+2a+2}$+1=0(a∈R)相切的所有圆中,最大圆面积与最小圆面积的差为2π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.三棱椎S-ABC中,SA⊥面ABC,△ABC为等边三角形,SA=2,AB=3,则三棱锥S-ABC的外接球的表面积为(  )
A.B.C.16πD.64π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若直线x-y+m=0将圆C:x2+y2-2x-1=0分成两部分的圆弧长之比是1:2,则m=(  )
A.0B.-2C.0或-2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O-ABC体积的最大值为$\frac{32}{3}$,则球O的表面积为64π.

查看答案和解析>>

同步练习册答案