| A. | 4π | B. | 8π | C. | 16π | D. | 64π |
分析 由已知结合三棱锥和正三棱柱的几何特征,可得此三棱锥外接球,即为以△ABC为底面以SA为高的正三棱柱的外接球,分别求出棱锥底面半径r,和球心距d,得球的半径R,然后求解表面积.
解答 解:根据已知中底面△ABC是边长为3的正三角形,SA⊥平面ABC,SA=2,
可得此三棱锥外接球,即为以△ABC为底面以SA为高的正三棱柱的外接球,
∵△ABC是边长为3的正三角形,
∴△ABC的外接圆半径r=$\sqrt{3}$,球心到△ABC的外接圆圆心的距离d=1,
故球的半径R=$\sqrt{3+1}$=2.
三棱锥S-ABC外接球的表面积为:4πR2=16π.
故选:C.
点评 本题考查的知识点是球内接多面体,熟练掌握球的半径R公式是解答的关键.
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4π | B. | 6π | C. | 12π | D. | 24π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ±1 | B. | $±\frac{{\sqrt{3}}}{2}$ | C. | $±\frac{{\sqrt{2}}}{2}$ | D. | $±\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 喜爱体育运动 | 不喜爱体育运动 | 合计 | |
| 男生 | 5 | ||
| 女生 | 10 | ||
| 合计 | 50 |
| P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com