分析 利用g[f(x)]=x2-a2x+1,代入建立等式,即可求a的值.
解答 解:∵f(x)=2x+a,g(x)=$\frac{1}{4}$(x2+3),
∴g[f(x)]=g(2x+a)
=$\frac{1}{4}$[(2x+a)2+3]
=$\frac{1}{4}$(4x2+4ax+a2+3)
=x2+ax+$\frac{{a}^{2}+3}{4}$=x2-a2x+1,
故恒有$\left\{\begin{array}{l}{a=-{a}^{2}}\\{\frac{{a}^{2}+3}{4}=1}\end{array}\right.$,∴a=-1.
点评 本题考查函数解析式的求解,考查代入法的运用,考查学生的计算能力,比较基础.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4π | B. | 8π | C. | 16π | D. | 64π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com