精英家教网 > 高中数学 > 题目详情
18.已知直线y=x+m和圆x2+y2=1交于A、B两点,O为坐标原点,若$\overrightarrow{AO}•\overrightarrow{AB}=\frac{3}{2}$,则实数m=(  )
A.±1B.$±\frac{{\sqrt{3}}}{2}$C.$±\frac{{\sqrt{2}}}{2}$D.$±\frac{1}{2}$

分析 联立$\left\{\begin{array}{l}{y=x+m}\\{{x}^{2}+{y}^{2}=1}\end{array}\right.$,得2x2+2mx+m2-1=0,由此利用根的判别式、韦达定理、向量的数量积能求出m.

解答 解:联立$\left\{\begin{array}{l}{y=x+m}\\{{x}^{2}+{y}^{2}=1}\end{array}\right.$,得2x2+2mx+m2-1=0,
∵直线y=x+m和圆x2+y2=1交于A、B两点,O为坐标原点,
∴△=4m2+8m2-8=12m2-8>0,解得m>$\frac{\sqrt{6}}{3}$或m<-$\frac{\sqrt{6}}{3}$,
设A(x1,y1),B(x2,y2),则x1+x2=-m,${x}_{1}{x}_{2}=\frac{{m}^{2}-1}{2}$,
y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2
$\overrightarrow{AO}$=(-x1,-y1),$\overrightarrow{AB}$=(x2-x1,y2-y1),
∵$\overrightarrow{AO}•\overrightarrow{AB}=\frac{3}{2}$,
∴$\overrightarrow{AO}•\overrightarrow{AB}$=${{x}_{1}}^{2}-{x}_{1}{x}_{2}$+y12-y1y2=1-$\frac{{m}^{2}-1}{2}$-$\frac{{m}^{2}-1}{2}$+m2-m2=2-m2=$\frac{3}{2}$,
解得m=$±\frac{\sqrt{2}}{2}$.
故选:C.

点评 本题考查实数值的求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、向量的数量积的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若(1-x+x2)(2-3x)6=a0+a1(x-1)+a2(x-1)2+…+a8(x-1)8,则a3=693.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=(x+2)2-1在区间[a,0]上的最大值为3,则在满足条件的实数a中任取一个,使函数f(x)=$\frac{{x}^{3}}{3}$-x2-a有3个零点的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,在正四棱柱ABCD-A1B1C1D1中,AB=1,AA1=2,点P是平面A1B1C1D1内的一个动点,则三棱锥P-ABC的正视图与俯视图的面积之比的最大值为(  )
A.1B.2C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.四棱锥P-ABCD的五个顶点都在一个球面上,底面ABCD是矩形,其中AB=3,BC=4,又PA⊥平面ABCD,PA=5,则该球的表面积为50π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.三棱椎S-ABC中,SA⊥面ABC,△ABC为等边三角形,SA=2,AB=3,则三棱锥S-ABC的外接球的表面积为(  )
A.B.C.16πD.64π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图1,已知正方形ABCD的边长为2,E、F分别为边AD、AB的中点.将△ABC沿BE折起,使平面ABE⊥平面BCDE.如图2,点G为AC的中点.

(Ⅰ)求证:DG∥平面ABE;
(Ⅱ)求直线CE与平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在一次高三数学模拟测验中,对本班“选考题”选答情况进行统计结果如下:
选修4-1选修4-4选修4-5
男生(人)1064
女生(人)2614
(Ⅰ)在统计结果中,如果把“选修4-1”和“选修4-4”称为“几何类”,把“选修4-5”称为“非几何类”,能否有99%的把握认为学生选答“几何类”与性别有关?
(Ⅱ)已知本班的两名数学课代表都选答的是“选修4-5”,现从选答“选修4-1”、“选修4-4”和“选修4-5”的同学中,按分层抽样的方法随机抽取7人,记抽取到数学课代表的人数为X,求X得分布列及数学期望.
附:.
P(k2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.平面α的斜线与平面α所成的角是35°,则与平面α内所有不过斜足的直线所成的角的范围是(  )
A.(0°,35°]B.(0°,90°]C.[35°,90°)D.[35°,90°]

查看答案和解析>>

同步练习册答案