精英家教网 > 高中数学 > 题目详情
12.已知f′(x)是定义在R上的函数f(x)的导数,且满足f′(x)+2f(x)>0,f(-1)=0,则f(x)<0解集为(-∞,-1).

分析 设g(x)=e2xf(x),求导,判断出g(x)在R上为增函数,利用单调性即可求出不等式的解集.

解答 解:设g(x)=e2xf(x),
∴g′(x)=2e2xf(x)+e2xf′(x)=e2x(f′(x)+2f(x))>0,
∴g(x)在R上为增函数,
∵f(x)<0=f(-1)
∴g(x)<g(-1)
∴x<-1,即f(x)<0解集为(-∞,-1),
故答案为(-∞,-1).

点评 本题考查了导数的应用,关键是构造函数,利用导数判断函数的单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|x-3|+|x+m|(x∈R).
(1)当m=1时,求不等式f(x)≥6的解集;
(2)若不等式f(x)≤5的解集不是空集,求参数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax3+bx-1在x=1处有极小值-5.
(1)试求a,b的值,并求出f(x)的单调区间;
(2)若关于x的方程f(x)=2m-1有3个不同的实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=cos2x+sinx,则f(x)的最大值与最小值的和为(  )
A.0B.$\frac{1}{4}$C.$\frac{9}{4}$D.$\frac{{2\sqrt{3}+6}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.
价格x99.51010.511
售量y1110865
经过分析,发现售量y对商的价格x具有线性相关系.
在2013春节间市价部门,对本五商场销售的某商天的销售及其价格进行调查,五个商场的售价x元和销量件之的一组数据表所示:欲销售量为12,价格应定为少.
附:在回归直线y=$\widehat{b}$x+$\widehat{a}$中$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$\frac{cosα+sinα}{cosα-sinα}=2$,则cos2α+sinα•cosα的值是(  )
A.$-\frac{6}{5}$B.$-\frac{4}{5}$C.$\frac{4}{5}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x+$\frac{1+a}{x}$-alnx,a∈R.
(1)求函数f(x)的单调区间;
(2)若在区间[1,e]上存在一点x0,使得x0+$\frac{1}{{x}_{0}}$<a(lnx0-$\frac{1}{{x}_{0}}$)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{6}}}{3}$,短轴一个端点到右焦点的距离为$\sqrt{3}$.
(1)求椭圆C的方程;
(2)设斜率为1的直线l经过左焦点与椭圆C交于A、B两点,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow a$,$\overrightarrow b$不共线,且对任意实数x,不等式$|{\overrightarrow a-x\overrightarrow b}|≥|{\overrightarrow a-\overrightarrow b}|$恒成立,则下列结论一定成立的是(  )
A.$\overrightarrow a$•$\overrightarrow b$-${\overrightarrow b^2}$=0B.${\overrightarrow a^2}-\overrightarrow a$•$\overrightarrow b$=0C.$\overrightarrow a$⊥$\overrightarrow b$D.$|{\overrightarrow a}|=|{\overrightarrow b}|$

查看答案和解析>>

同步练习册答案