精英家教网 > 高中数学 > 题目详情

【题目】已知由实数组成的等比数列{an}的前项和为Sn , 且满足8a4=a7 , S7=254.
(1)求数列{an}的通项公式;
(2)对n∈N* , bn= ,求数列{bn}的前n项和Tn

【答案】
(1)解:设等比数列{an}的公比为q,

由8a4=a7,可得8= =q3,解得q=2.

∵S7=254,∴ =254,解得a1=2.

∴an=2n


(2)解:bn= = =

∴Tn= + +…+ =1﹣


【解析】(1)设等比数列{an}的公比为q,由8a4=a7 , 可得8= =q3 , 解得q.由S7=254, =254,解得a1 . (2)bn= = = ,利用“裂项求和”方法即可得出.
【考点精析】本题主要考查了数列的前n项和的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣x3与g(x)=x3﹣ax的图象上存在关于x轴的对称点,e为自然对数的底数,则实数a的取值范围是(
A.(﹣∞,e)
B.(﹣∞,e]
C.(﹣∞,
D.(﹣∞, ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四边形ABCD为菱形,GACBD交点,

(I)证明:平面平面

(II)若 三棱锥的体积为,求该三棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,内角A,B,C的对边分别为a,b,c,且cos2A=3cos(B+C)+1.
(Ⅰ)求角A的大小;
(Ⅱ)若cosBcosC=﹣ ,且△ABC的面积为2 ,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2(|x+1|+|x﹣1|﹣a)
(1)当a=3时,求函数f(x)的定义域;
(2)若不等式f(x)≥2的解集为R,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,将边长为2的正方体沿对角线折起,得到三棱锥,则下列命题中,错误的为( )

A. 直线平面

B.

C. 三棱锥的外接球的半径为

D. 的中点,则平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线过点P且与x轴、y轴的正半轴分别交于AB两点,O为坐标原点,是否存在这样的直线满足下列条件:①△AOB的周长为12②△AOB的面积为6.若存在,求出方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的标准方程为该椭圆经过点,且离心率为

(1)求椭圆的标准方程;

(2)过椭圆长轴上一点作两条互相垂直的弦.若弦的中点分别为,证明:直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校书法兴趣组有3名男同学ABC和3名女同学XYZ,其年级情况如下表:

一年级

二年级

三年级

男同学

A

B

C

女同学

X

Y

Z

现从这6名同学中随机选出2人参加书法比赛每人被选到的可能性相同

用表中字母列举出所有可能的结果;

M为事件“选出的2人来自不同年级且性别相同”,求事件M发生的概率.

查看答案和解析>>

同步练习册答案