精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=lnx﹣x3与g(x)=x3﹣ax的图象上存在关于x轴的对称点,e为自然对数的底数,则实数a的取值范围是(
A.(﹣∞,e)
B.(﹣∞,e]
C.(﹣∞,
D.(﹣∞, ]

【答案】D
【解析】解:函数f(x)=lnx﹣x3与g(x)=x3﹣ax的图象上存在关于x轴的对称点, ∴f(x)=﹣g(x)有解,
∴lnx﹣x3=﹣x3+ax,
∴lnx=ax,在(0,+∞)有解,
分别设y=lnx,y=ax,
若y=ax为y=lnx的切线,
∴y′=
设切点为(x0 , y0),
∴a= ,ax0=lnx0
∴x0=e,
∴a=
结合图象可知,a≤
故选:D.

由题意可知f(x)=﹣g(x)有解,即y=lnx与y=ax有交点,根据导数的几何意义,求出切点,结合图象,可知a的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数kR),且满足f(﹣1)=f(1).

(1)求k的值;

(2)若函数y=fx)的图象与直线没有交点,求a的取值范围;

(3)若函数x[0,log23],是否存在实数m使得hx)最小值为0,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李冶(1192﹣1279),真定栾城(今属河北石家庄市)人,金元时期的数学家、诗人、晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径,正方形的边长等,其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)(
A.10步、50步
B.20步、60步
C.30步、70步
D.40步、80步

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)当时,求函数上的值域;

(2)若函数上的最小值为3,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=mln(x+1),g(x)= (x>﹣1).
(Ⅰ)讨论函数F(x)=f(x)﹣g(x)在(﹣1,+∞)上的单调性;
(Ⅱ)若y=f(x)与y=g(x)的图象有且仅有一条公切线,试求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由数字1,2,…,6构成的且含有1,6相邻的n位数有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲
已知函数f(x)=|a﹣x|(a∈R)
(Ⅰ)当a= 时,求使不等式f(2x﹣ )>2f(x+2)+2成立的x的集合A;
(Ⅱ)设x0∈A,证明f(x0x)≥x0f(x)+f(ax0).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了解老人们的健康状况,政府从 老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能 自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行 统计,样本分布被制作成如图表:
(1)若采取分层抽样的方法再从样本中的不能自理的老人中抽取16人进一步了解他们的生活状况,则两个群体中各应抽取多少人?
(2)估算该市80岁及以上长者占全市户籍人口的百分比;
(3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发 放生活补贴,标准如下:①80岁及以上长者每人每月发放生活补贴200元;②80岁以下 老人每人每月发放生活补贴120元;③不能自理的老人每人每月额外发放生活补贴100 元.试估计政府执行此计划的年度预算.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知由实数组成的等比数列{an}的前项和为Sn , 且满足8a4=a7 , S7=254.
(1)求数列{an}的通项公式;
(2)对n∈N* , bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案