| A. | AB边中线所在的直线上 | B. | ∠C平分线所在的直线上 | ||
| C. | 与AB垂直的直线上 | D. | 三角形ABC的外心 |
分析 取AB的中点D,利用$\overrightarrow{BA}•\overrightarrow{OA}+|\overrightarrow{BC}{|}^{2}=\overrightarrow{AB}•\overrightarrow{OB}+|\overrightarrow{AC}{|}^{2}$,化简可得$\overrightarrow{BA}•2\overrightarrow{OC}=0$,从而可得点O在AB边的高所在的直线上.
解答 解:取AB的中点D,则∵$\overrightarrow{BA}•\overrightarrow{OA}+|\overrightarrow{BC}{|}^{2}=\overrightarrow{AB}•\overrightarrow{OB}+|\overrightarrow{AC}{|}^{2}$
∴$\overrightarrow{BA}•(\overrightarrow{OA}+\overrightarrow{OB})=-|\overrightarrow{BC}{|}^{2}+|\overrightarrow{AC}{|}^{2}$
∴$\overrightarrow{BA}•2\overrightarrow{OD}=\overrightarrow{AB}•(-2\overrightarrow{CD})$![]()
∴$\overrightarrow{BA}•2\overrightarrow{OC}=0$
∴$\overrightarrow{BA}⊥\overrightarrow{OC}$
∴点O在AB边的高所在的直线上
故选C.
点评 本题主要考查向量数量积的应用,根据向量的基本运算结合向量数量积的公式是解决本题的关键.
科目:高中数学 来源: 题型:解答题
| 分组 | 频率 |
| [1.00,1.05) | |
| [1.05,1.10) | |
| [1.10,1.15) | |
| [1.15,1.20) | |
| [1.20,1.25) | |
| [1.25,1.30) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ±$\frac{\sqrt{3}}{3}$ | B. | -$\frac{\sqrt{3}}{3}$ | C. | ±$\sqrt{3}$ | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 存在实数x0,使得g(x0)=1 | B. | 当x1<x2时,必有g(x1)<g(x2) | ||
| C. | g(2)的取值与实数a有关 | D. | 函数g(f(x))的图象必过定点 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com