精英家教网 > 高中数学 > 题目详情
13.如图,在正方体ABCD-A1B1C1D1中,棱长是1,E、F分别是AB、BC的中点,H是DD1上任意一点.
(1)证明:EF∥平面A1C1H;
(2)若H是DD1的中点,求H到平面A1C1FE的距离.

分析 (1)证明EF∥A1C1,利用线面平行的判定定理证明:EF∥平面A1C1H;
(2)连接BD,与EF交于N,连接B1D1,与A1C1交于M,则EF⊥平面B1D,作HO⊥MN,则HO⊥平面A1C1FE,求出HO即可求H到平面A1C1FE的距离.

解答 (1)证明:∵E、F分别是AB、BC的中点,
∴EF∥AC,
∵A1C1∥AC,
∴EF∥A1C1
∵EF?平面A1C1H,A1C1?平面A1C1H,
∴EF∥平面A1C1H;
(2)解:连接BD,与EF交于N,连接B1D1,与A1C1交于M,则EF⊥平面B1D,
∵EF?平面A1C1FE,
∴平面A1C1FE⊥平面B1D,
作HO⊥MN,则HO⊥平面A1C1FE.
梯形DD1MN中,DD1=1,MD1=$\frac{\sqrt{2}}{2}$,DN=$\frac{3\sqrt{2}}{4}$,MN=$\sqrt{1+\frac{1}{8}}$=$\frac{3\sqrt{2}}{4}$,
设HO=y,MO=x,则$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=\frac{1}{4}+\frac{1}{2}}\\{(\frac{3\sqrt{2}}{8}-x)^{2}+{y}^{2}=(\frac{5\sqrt{2}}{8})^{2}}\end{array}\right.$,∴y=$\frac{5}{6}$,
∴H到平面A1C1FE的距离为$\frac{5}{6}$.

点评 本题考查线面平行的判定,考查点到平面距离的计算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.过直线l:2x+y-2=0上任意一点P做圆C:x2+y2+2x=0的切线,切点为A,则切线|PA|的最小值为$\frac{\sqrt{55}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,ABCD是圆O的内接四边形,点C是$\widehat{BD}$的中点,切线CE交AD的延长线于E,AC交BD于F.
(Ⅰ)求证:∠AFD=∠CDE;
(Ⅱ)写出比值与$\frac{AE}{CE}$相等的5组线段.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知曲线C的极坐标方程为ρ=6sinθ,以极点O为原点,极轴为x轴的非负半轴建立直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=-1+at}\\{y=1+t}\end{array}\right.$ (t为参数).
(1)求曲线C的直角坐标方程及直线l的普通方程;
(2)直线l与曲线C交于B,D两点,当|BD|取到最小值时,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.从点P出发的三条线段PA=PB=PC=1,且它们两两垂直,则二面角P-AB-C的大小为arctan$\sqrt{2}$;P到平面ABC的距离为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)某校共有学生2000名,各年级男、女生人数如表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.18,现用分层抽样的方法在全校100名学生,求应在三年级抽取的学生人数;
一年级二年级三年级
女生373xy
男生377370z
(2)甲乙两个班级进行一门课程的考试,按照学生考试成绩优秀和不优秀统计成绩后,得到如下的列联表:
班级与成绩列联表
优秀不优秀
甲班1030
乙班1228
根据列联表的独立性检验,能否在犯错误的概率不超过0.1的前提下认为成绩与班级有关系?
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232,0722.7063.8415.0246.6357.87910.828
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在直三棱柱ABC-A1B1C1中,D为AB的中点,点E,点F分别在BC和B1B上,且直线DE∥平面A1C1F,B1D⊥A1F,AC⊥AB.
(1)求BE:BC的值;
(2)求证:A1F⊥平面B1DE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,在四棱锥P-ABCD中,侧面PAD为正三角形,底面ABCD是边长为2的为正方形,侧面PAD⊥底面ABCD,M为底面ABCD内的一个动点,且满足MP=MC,则点M在正方形ABCD内的轨迹的长度为(  )
A.$\sqrt{5}$B.2$\sqrt{2}$C.πD.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.正三棱柱ABC-A1B1C1的所有棱长都相等,D,E分别是AB,BB1的中点.
(Ⅰ)证明:BC1∥平面A1CD;
(Ⅱ)求二面角D-A1C-E的正弦值.

查看答案和解析>>

同步练习册答案