分析 (1)曲线C的极坐标方程为ρ=6sinθ,即ρ2=6ρsinθ,利用互化公式可得直角坐标方程.直线l的参数方程为$\left\{\begin{array}{l}{x=-1+at}\\{y=1+t}\end{array}\right.$ (t为参数),消去参数t可得普通方程.
(2)由直线l经过定点P(-1,1),此点在圆的内部,因此当CP⊥l时,|BD|取到最小值,利用kCP•kl=-1,解得kl,即可得出.
解答 解:(1)曲线C的极坐标方程为ρ=6sinθ,即ρ2=6ρsinθ,化为直角坐标方程:x2+y2=6y,配方为:x2+(y-3)2=9,圆心C(0,3),半径r=3.
直线l的参数方程为$\left\{\begin{array}{l}{x=-1+at}\\{y=1+t}\end{array}\right.$ (t为参数),消去参数t可得:x-ay+a+1=0.
(2)由直线l经过定点P(-1,1),此点在圆的内部,
因此当CP⊥l时,|BD|取到最小值,则kCP•kl=$\frac{1-3}{-1-0}$×kl=-1,解得kl=-$\frac{1}{2}$.
∴$\frac{1}{a}$=-$\frac{1}{2}$,解得a=-2.
点评 本题考查了极坐标与直角坐标的互化、参数方程化为普通方程、相互垂直的直线斜率之间的关系、圆的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com