精英家教网 > 高中数学 > 题目详情
11.在半径为2的圆内,作内接等腰三角形,当底边上的高为3时,它的面积最大.

分析 设圆内接等腰三角形ABC的底边长为2x,高为h.运用勾股定理可得x=$\sqrt{h(4-h)}$,进而得到面积函数的解析式,求出导数,单调区间,可得h=3处取得极大值,且为最大值.

解答 解 设圆内接等腰三角形ABC的底边长为2x,高为h.
那么h=AO+OD=2+$\sqrt{4-{x}^{2}}$,解得x2=h(4-h),
于是内接三角形的面积为S=x•h=$\sqrt{h(4-h)}$•h,
由S′=$\frac{h(2-h)}{\sqrt{h(4-h)}}$+$\sqrt{h(4-h)}$=$\frac{2h(3-h)}{\sqrt{h(4-h)}}$,(0<h<4).
令S′=0,解得h=3,
 当h∈(0,3)时,S′>0,函数S递增;
当h∈(3,4)时,S′<0,函数S递减.
可得函数S在h=3处取得极大值,且为最大值.
故答案为:3.

点评 本题考查导数在实际问题中的运用:求最值,正确求出面积函数的解析式,并求出导数是解题的关键,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知曲线C的极坐标方程为ρ=6sinθ,以极点O为原点,极轴为x轴的非负半轴建立直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=-1+at}\\{y=1+t}\end{array}\right.$ (t为参数).
(1)求曲线C的直角坐标方程及直线l的普通方程;
(2)直线l与曲线C交于B,D两点,当|BD|取到最小值时,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,在四棱锥P-ABCD中,侧面PAD为正三角形,底面ABCD是边长为2的为正方形,侧面PAD⊥底面ABCD,M为底面ABCD内的一个动点,且满足MP=MC,则点M在正方形ABCD内的轨迹的长度为(  )
A.$\sqrt{5}$B.2$\sqrt{2}$C.πD.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=xex+ax2-2x,a∈R.
(1)当a=-1时,求函数f(x)的单调区间;
(2)若对x≥0时,恒有f′(x)-f(x)≥(4a+2)x-1成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知sinα是方程5x2-7x-6=0的根,α为第三象限的角,求$\frac{sin(-α-\frac{3}{2}π)•sin(\frac{3}{2}π-α)•ta{n}^{2}(2π-α)}{cos(\frac{π}{2}-α)•cos(\frac{π}{2}+α)•cot(π-α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设A=$\frac{1}{2}$$(\begin{array}{l}{2}&{0}&{0}\\{0}&{1}&{3}\\{0}&{2}&{5}\end{array})$,求|A|,A-1,(A*-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.正三棱柱ABC-A1B1C1的所有棱长都相等,D,E分别是AB,BB1的中点.
(Ⅰ)证明:BC1∥平面A1CD;
(Ⅱ)求二面角D-A1C-E的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.关于x的方程$|\begin{array}{l}{1}&{x}&{{x}^{2}}\\{1}&{2}&{4}\\{1}&{3}&{9}\end{array}|$=0的解为x=2或x=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy,以O为极点,x轴的正半轴建立直角坐标系,直线l的极坐标方程$ρsin(θ+\frac{π}{4})$=2$\sqrt{2}(m+1)$,而曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{2}cosφ}\\{y=\sqrt{2}sinφ}\end{array}\right.$(其中φ为参数);
(1)若直线l与曲线C恰好有一个公共点,求实数m的值;
(2)当m=-$\frac{3}{4}$,求直线l被曲线C截得的弦长.

查看答案和解析>>

同步练习册答案