精英家教网 > 高中数学 > 题目详情
10.已知a=${∫}_{0}^{\frac{π}{2}}$(-cosx)dx,则(ax+$\frac{1}{ax}$)9展开式中,x3项的系数为(  )
A.$\frac{63}{8}$B.$\frac{63}{16}$C.-84D.-$\frac{63}{8}$

分析 利用定积分的定义求出a的值,再利用二项式展开式的通项公式求出展开式中x3项的系数.

解答 解:a═${∫}_{0}^{\frac{π}{2}}$(-cosx)dx=-sinx${|}_{0}^{\frac{π}{2}}$=-1,
则二项式(ax+$\frac{1}{ax}$)9 =(-x-$\frac{1}{x}$)9=-(x+$\frac{1}{x}$)9
x3项的系数为开式中,通项公式为
Tr+1=-${C}_{9}^{r}$•x9-r•${(\frac{1}{x})}^{r}$=-${C}_{9}^{r}$•x9-2r
令9-2r=3,求得 r=3,
∴展开式中x3项的系数为
x的系数为-${C}_{9}^{3}$=-84,
故选:C.

点评 本题考查了定积分的计算问题以及二项式展开式的通项公式应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2$\sqrt{3}$cos2$\frac{x}{4}$-$\sqrt{3}$.
(1)求函数f(x)的最小正周期和对称轴方程;
(2)若△ABC中,内角A满足f(A)=$\frac{3}{2}$,且边BC长为3,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示,在四边形ABCD中,AB=AD=CD=1,BD=$\sqrt{2}$,BD⊥CD.将四边形ABCD沿对角线BD折成四面体A'-BCD,使平面A'BD⊥平面BCD,则下列结论正确的是(  )
A.A'C⊥BDB.四面体 A'-BCD的体积为 $\frac{1}{3}$
C.CA'与平面 A'BD所成的角为 30°D.∠BA'C=90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知△ABC中,a:b:c=3:2;4,则cosB=(  )
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.$\frac{7}{8}$D.-$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在某次物理实验中,得到一组不全相等的数据x1,x2,x3,…,xn,若a是这组数据的算术平均数,则a满足(  )
A.$\sum_{i=1}^{n}$(xi-a)最小B.$\sum_{i=1}^{n}$|xi-a|最小
C.$\sum_{i=1}^{n}$(xi-a)2最小D.$\frac{1}{n}$$\sum_{i=1}^{n}$|xi-a|最小

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知不等式(ax+3)(x2-b)≤0对任意x∈(-∞,0)恒成立,其中a,b是整数,则a+b的取值的集合为   {4,10}   .

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=log2$\frac{x}{2}$•log2$\frac{x}{4}$,x∈(2,8]的值域为(  )
A.[0,2]B.[-$\frac{1}{4}$,2]C.(0,2]D.(-$\frac{1}{4}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)计算(lg2)2+lg2•lg5+lg5;
(2)计算${(\root{3}{2}×\sqrt{3})^6}-8{(\frac{16}{49})^{-\frac{1}{2}}}-\root{4}{2}×{8^{0.25}}-{(-2016)^0}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知O为坐标原点,方程x2+y2+x-6y+c=0
(1)若此方程表示圆,求c的取值范围;
(2)若(1)中的圆与直线l:x+2y-3=0交于P、Q两点.若以PQ为直径的圆过原点O求c值.

查看答案和解析>>

同步练习册答案