精英家教网 > 高中数学 > 题目详情
2.函数f(x)=log2$\frac{x}{2}$•log2$\frac{x}{4}$,x∈(2,8]的值域为(  )
A.[0,2]B.[-$\frac{1}{4}$,2]C.(0,2]D.(-$\frac{1}{4}$,2]

分析 将函数f(x)化简为f(x)=$lo{g}_{2}\frac{x}{2}•lo{g}_{2}(\frac{x}{2}×\frac{1}{2})$利用换元法转为二次函数求解即可.

解答 解:函数f(x)=log2$\frac{x}{2}$•log2$\frac{x}{4}$=$lo{g}_{2}\frac{x}{2}•lo{g}_{2}(\frac{x}{2}×\frac{1}{2})$=$lo{g}_{2}\frac{x}{2}•(lo{g}_{2}\frac{x}{2}-1)$
令t=$lo{g}_{2}\frac{x}{2}$,
∵x∈(2,8],
∴t∈(0,2].
函数f(x)转化为g(t)=t(t-1)=t2-t,
开口向上,对称轴t=$\frac{1}{2}$,
当t=$\frac{1}{2}$时,函数g(t)取得最小值为$-\frac{1}{4}$,
当t=2时,函数g(t)取得最大值为2.
∴函数g(t)的值域为[$-\frac{1}{4}$,2],即函数f(x)的值域为[$-\frac{1}{4}$,2],
故选B.

点评 本题考查了对数的化简计算以及性质和值域的求法,利用了换元法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.高三某班要安排6名同学值日(周日休息),每天安排一人,每人值日一天,要求甲必须安排在周一到周四的某一天,乙必须安排在周五或周六的某一天,则不同的值日生表有多少种?(  )
A.144B.192C.360D.720

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.现有一个质地均匀的正四面体骰子,每个面上分别标有数字1、2、3、4,将这个骰子连续投掷两次,朝下一面的数字分别记为a,b,试计算下列事件的概率:
(1)事件A:a=b;
(2)事件B:函数f(x)=$\frac{1}{2}$ax2-bx+1在区间[$\frac{3}{4}$,+∞)上为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a=${∫}_{0}^{\frac{π}{2}}$(-cosx)dx,则(ax+$\frac{1}{ax}$)9展开式中,x3项的系数为(  )
A.$\frac{63}{8}$B.$\frac{63}{16}$C.-84D.-$\frac{63}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,内角A,B,C所对边的边长分别为a,b,c,已知2sin2$\frac{A}{2}$=$\sqrt{3}$sinA.
(I)求角A的大小;
(II)若$\frac{a}{c}$=2cosB,求$\frac{a}{b}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知某几何体的三视图如图所示,则该几何体的体积为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=|${log_{\frac{1}{2}}}$x|的单调递增区间是(  )
A.$(0,\frac{1}{2}]$B.(1,2]C.[1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线C:y2=4x,过焦点且与坐标轴不平行的直线与该抛物线相交于A、B两点,记线段AB中点为P(x0,y0).
(Ⅰ)若x0=2,求直线AB的斜率;
(Ⅱ)设线段AB的垂直平分线与x轴,y轴分别相交于点D、E.当直线AB的斜率大于$\frac{{\sqrt{3}}}{3}$时,求$\frac{|AB|}{|DE|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,a,b,c分别是三个内角A,B,C的对边,设a=2,b=3,c=4.
(Ⅰ)求cosC的值;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

同步练习册答案