精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中 是自然对数的底数.

(Ⅰ)讨论的单调性;

(Ⅱ)设函数,证明: .

【答案】(Ⅰ)上单调递减,在上单调递增;(2)见解析.

【解析】试题分析:(1)先求函数导数,根据导函数零点情况分类讨论:当时,仅有一个零点1;当时,两个相同的零点;当时,两个不同的零点,最后根据导函数符号变化规律确定单调性,(2)先等价转化所证不等式: ①且②,然后分别利用导数研究函数最值: 的最小值为 的最小值为

试题解析:(Ⅰ)

(1)当时, ,当 ;当

所以上单调递减,在上单调递增.

(2)当时,令,得

,由

所以 上单调递增,在上单调递减.

(3)当时,令 ,故上递增.

(4)当时,令,得

,由

所以 上单调递增,在上单调递减.

综上,当时, 上单调递减,在上单调递增.

时, 上单调递增,在上单调递减.

时, 上递增.

时, 上单调递增,在上单调递减.

(Ⅱ) ①且

先证①:令,则

单调递减;当 单调递增;

所以 ,故①成立!

再证②:由(Ⅰ),当时, 上单调递减,在上单调递增,

所以 ,故②成立!

综上, 恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知实数满足,实数满足,则的最小值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学为调研学生在 两家餐厅用餐的满意度,从在 两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.

整理评分数据,将分数以10为组距分成6组: ,得到餐厅分数的频率分布直方图,和餐厅分数的频数分布表:

定义学生对餐厅评价的“满意度指数”如下:

分数

满意度指数

(Ⅰ)在抽样的100人中,求对餐厅评价“满意度指数”为0的人数;

(Ⅱ)从该校在 两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对餐厅评价的“满意度指数”比对餐厅评价的“满意度指数”高的概率;

(Ⅲ)如果从 两家餐厅中选择一家用餐,你会选择哪一家?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与直线相切.

(1)若直线与圆交于两点,求

(2)设圆轴的负半轴的交点为,过点作两条斜率分别为的直线交圆两点,且,试证明直线恒过一定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在抛物线上,且到抛物线的焦点的距离等于2.

求抛物线的方程;

若直线与抛物线相交于两点,且为坐标原点),求证直线恒过轴上的某定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形.

(1)求该几何体的体积;

(2)求该几何体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产电饭煲,每年需投入固定成本40万元,每生产1万件还需另投入16万元的变动成本,设该公司一年内共生产电饭煲万件并全部销售完,每一万件的销售收入为万元,且),该公司在电饭煲的生产中所获年利润为(万元),(注:利润=销售收入-成本)

1写出年利润(万元)关于年产量(万件)的函数解析式,并求年利润的最大值;

2为了让年利润不低于2360万元,求年产量的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中是自然对数的底数),.

(1)记函数,且,求的单调增区间;

(2)若对任意,均有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面平面,四边形是菱形, .

(1)求证:

(2)若,且直线与平面所成角为,求二面角的平面角的余弦值.

查看答案和解析>>

同步练习册答案